
vTube: Efficient Streaming of Virtual Appliances
Over Last-Mile Networks

Yoshihisa Abe†, Roxana Geambasu‡, Kaustubh Joshi•,
H. Andrés Lagar-Cavilla?, Mahadev Satyanarayanan†

†Carnegie Mellon University, ‡Columbia University, •AT&T Research, ?GridCentric

Abstract

Cloud-sourced virtual appliances (VAs) have been
touted as powerful solutions for many software main-
tenance, mobility, backward compatibility, and security
challenges. In this paper, we ask whether it is possible
to create a VA cloud service that supports fluid, interac-
tive user experience even over mobile networks. More
specifically, we wish to support a YouTube-like stream-
ing service for executable content, such as games, in-
teractive books, research artifacts, etc. Users should be
able to post, browse through, and interact with exe-
cutable content swiftly and without long interruptions.
Intuitively, this seems impossible; the bandwidths, la-
tencies, and costs of last-mile networks would be pro-
hibitive given the sheer sizes of virtual machines! Yet,
we show that a set of carefully crafted, novel prefetch-
ing and streaming techniques can bring this goal surpris-
ingly close to reality. We show that vTube, a VA stream-
ing system that incorporates our techniques, supports
fluid interaction even in challenging network conditions,
such as 4G LTE.

1 Introduction

Viewing cloud-sourced video over 3G or 4G mobile
networks is a reality experienced today by millions
of smartphone and tablet users. This is an impressive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.

SOCC ’13, October 01 - 03 2013, Santa Clara, CA, USA
Copyright 2013 ACM 978-1-4503-2428-1/13/10$15.00.
http://dx.doi.org/10.1145/2523616.2523636

achievement considering the constraints of cellular net-
works (shared bandwidth, high latency, high jitter) and
the sustained high volume of data transmission (roughly
2 GB per hour per user for HD video according to Net-
flix [7]). The key to successful video streaming is ag-
gressive prefetching. By maintaining a sufficient number
of prefetched frames in advance of demand, the video
player is able to tolerate transient degradation of net-
work quality due to factors such as congestion or brief
signal loss.

Can we achieve a similar streaming capability for
cloud-sourced virtual appliances? That is the question
we ask in this paper. Since their introduction [34], virtual
appliances (VAs) have been proposed for many use cases
such as software deployment and maintenance [32],
desktop administration [10], and management of hetero-
genous systems [19]. More recently, VAs have been pro-
posed for archiving executable content such as scientific
simulation models, interactive games, and expert sys-
tems for industrial troubleshooting [35]. Our vision is
to create a YouTube-like cloud service for VAs, called
vTube. On vTube, browsing VAs and click-launching
some of them should be as seamless as browsing and
launching from YouTube.

Alas, streaming VAs over last-mile networks is much
harder than streaming videos. For crisp, low-latency user
interaction, the launched VA should execute close to the
user rather than executing in the cloud and just streaming
its output. As we show in Section 2.2, no existing VA
transfer mechanism has adequate agility for browsing.
Prior work on VA streaming [29], has not addressed such
networks.

In this paper, we investigate the problem of VA
streaming over limited-bandwidth, high-latency last-
mile networks such as broadband, Wi-Fi, and 4G/3G.
The essence of our solution is a new VA streaming mech-
anism that uses prefetching hints that are obtained by a
fine-grained analysis of disk and memory state access
traces from previous executions. This complexity is nec-
essary because the temporal order in which parts of VA
state are accessed may vary widely from execution to ex-

ecution, depending on user actions, network interactions
and runtime data content.

The key insight we exploit is that despite these wide
variances from execution to execution and from user to
user, it is possible to identify short segments of state ac-
cess that once activated, are exceptionally stable across
multiple executions and can thus provide high-quality
predictive hints. Furthermore, these state segments com-
pose in many different ways to form the major building
blocks through which long chains of VA state access are
constructed. In effect, we extract a VA-specific notion of
state access locality that can be reliably predicted and
then exploited for prefetching.

Our experiments and usage experience confirm that
vTube supports fluid interactions even over mobile net-
works. For example, on an AT&T 4G/LTE network,
initial buffering delay is under 40 seconds even for
an interactive game VA accessing several hundreds of
megabytes of state. Subsequent execution proceeds at
near-native performance with fewer than 12 buffering in-
terruptions over a 15 minute period, about half of which
are sub-second, and all but one of which are sub-10-
seconds in duration. Compared to VMTorrent, a prior
VA streaming system [29], we reduce the unnecessary
state transfers by at least a factor of 2, and result in users
having to wait for VA state 17 fewer minutes in a 30
minute session. Relative to VA streaming, we make three
contributions:

• We motivate and introduce a VA streaming model
that incorporates from the video streaming area not
just the delivery model, but (uniquely) the user-
interaction model and the evaluation metrics (Sec-
tion 2).
• We describe the design of a VA streaming algo-

rithm that focuses on improving user-perceived in-
teractivity of the application (Sections 3 and 4). Our
algorithm is rooted in novel observations about VA
execution patterns and represents a significant de-
parture from existing overly-simplistic VA stream-
ing algorithms.
• We present the first evaluation of VM streaming in-

teractivity over mobile networks (Section 5).

2 Motivation and Context
vTube represents a new kind of VA repository whose
agility requirements far surpass those of existing VA
repositories such as VMware’s VA Marketplace [37].
We envision a lightweight user experience that is closer
to browsing web pages than managing a cloud dash-
board. Section 2.1 motivates the need for agility in VA
transfer using several use cases. The agility required
for a satisfactory browsing experience exposes limita-

tions of well-known VA transfer mechanisms, as dis-
cussed in Section 2.2. These limitations motivate our
new video-streaming-based model for VA transfer, de-
scribed in Section 2.3. We make explicit vTube’s specific
goals and assumptions in Sections 2.4 and 2.5.

2.1 Motivating Use Cases

Our design of vTube was guided by a series of motivat-
ing use cases, of which one has played an essential role:
long-term preservation of digital artifacts. We next de-
scribe this use case, after which we broaden the scope
with other examples.

Archival executable content: Today, an increasing
fraction of the world’s intellectual output is in the form
of executable content. This includes apps, games, inter-
active media, simulation models, tutoring systems, ex-
pert systems, data visualization tools, and so on. While
short- to medium-term persistence of these digital arti-
facts has been addressed, long-term preservation – mea-
sured in decades or centuries – is an open problem that
few have considered [35]. How can such artifacts be pre-
served over decades and reproduced in the form origi-
nally intended as file formats, applications, and operat-
ing systems come and go?

Precise reproduction of software execution, which we
call execution fidelity, is a complex problem in which
many moving parts must all be perfectly aligned –
one needs the right versions of the hardware, the op-
erating system, the application, dynamically linked li-
braries, configuration and user preferences, geographic
location, and so on. While multiple approaches exist
(see Section 2.2), virtual machines (VMs) are consid-
ered the highest-fidelity mechanism for precisely cap-
turing execution contexts. Consequently, some recent
executable content archival efforts, such as the Olive
project (http://olivearchive.org), use VMs
as their containers of choice.

vTube’s design is guided by such archival library ser-
vices, from which it draws its requirements. We argue
that the true potential of such executable content li-
braries will be achieved only when their content is con-
veniently accessible from everywhere on the Internet,
including WANs and cellular networks. For example,
a user should be able to use his commute time to look
through fun artifacts in the library. Moreover, a key re-
quirement is to support browsing, an activity that is nat-
ural in libraries and bookstores. A user should be able
to search for a broad topic of interest – such as tools
for image processing or strategy games from the early
2000’s – and then try out a number of VAs before de-
ciding if she is interested in one. Hence, quick startup
time, along with reasonable performance during execu-

tion, over last-mile networks are crucial design require-
ments for vTube.

Other use cases: While digital libraries form the core
motivation for vTube’s use of VM streaming over last
mile networks, such a facility is useful for several other
current and future applications as well.

Application distribution: VAs can allow software pub-
lishers to encapsulate applications with the needed OS
and libraries, and publish them for use across multi-
ple platforms - e.g., a Windows game being played on
a Linux laptop. The large size of VAs such as games
makes streaming an attractive option for delivery. Users
can start playing without having to wait for everything
to be downloaded (which can take a long time).

Media encapsulation: As has often been argued, VAs
can also serve as all-in-one containers for media requir-
ing special handling, such as a video file in an exotic
format, or a movie requiring special DRM protections. A
lightweight VA streaming service would facilitate quick
access to such media without requiring users to install
the prerequisite codecs and libraries that are needed.

Streaming applications to local data: Applications that
work on large media files could be packaged in VAs and
streamed to a user’s personal computer. For instance,
an application rental service could stream professional
video editing software encapsulated in a VA to its cus-
tomers whenever the customer wishes to edit video they
have captured using their home video cameras.

2.2 Design Alternatives for VA Delivery

A variety of mechanisms exist today for accessing
cloud-sourced VAs over last-mile networks. We exam-
ine the available choices below.

Use thin clients: VA state transfer over last mile net-
works can be completely avoided by executing the VA
in the cloud and using a thin client protocol such as
VNC [31] or ThinC [30] for user interaction. Unfortu-
nately, this approach does not deliver adequate respon-
siveness in high-latency networks such as 3G or 4G,
whose RTTs routinely range between 50-300 ms. Our
anecdotal experience is that playing a game such as
Riven over VNC with 200 ms RTT is frustrating. Ev-
ery interaction resulting in non-trivial screen changes
is delayed, leading to a very sluggish application and
chopped animations. In contrast, the same game is quite
usable over vTube under the same conditions; the only
difference from local execution is about a minute’s de-
lay for initial buffering and a few, well-signaled buffer-
ing interruptions. Moreover, in scenarios where large
amounts of content come from the client, such as edit-
ing a video with a proprietary app, thin clients are inef-

ficient. We therefore focus on VA execution close to the
user.

Download entire VAs: VMware’s Marketplace [37]
transfers an entire VA before launching an instance.
Under limited bandwidth, this leads to unacceptable
launch delays. For example, a plain Ubuntu 12.04 LTS
image with an 80 GB disk is a 507-MB compressed
file on VMware’s Marketplace. At 7.2 Mbps, which is
the nation-wide average bandwidth according to Aka-
mai [22], downloading this image takes over nine min-
utes. Adding applications or data to the VA increases its
image size, further slowing transfer before launch. To be
fair, VMware Marketplace was not intended to support
quick launch, whereby users can browse and try out VAs
seamlessly.

Download only parts of VAs: VAs may contain state
that is rarely accessed in typical executions. For ex-
ample, the disk drivers in the guest OS may support
bad block remapping and flash wear-leveling because
these functions are useful on real hardware. This code is
not needed on a virtual disk. Selectively avoiding these
rarely-used parts of a VA (possibly by examining traces
of previous executions) can reduce data transfer before
VA launch. Our experience, however, is that the poten-
tial win on well-constructed VAs is limited. For the VAs
studied in Section 5, the compressed state can reach up
to 845 MB.

Shrink VAs and leverage cached state: To further cut
down on VA state transferred, researchers have proposed
deduplication [33] and free-list identification [21]. With
deduplication plus caching, matching partial state that
was downloaded in the past from any VA can be reused.
With free-list identification, one avoids the futile transfer
of unallocated pages in a guest’s memory image. Both of
these techniques are effective, and we incorporate them
in vTube. However, their effectiveness depends signifi-
cantly on the target workload, and our experience indi-
cates that they are insufficient for demanding cases.

Don’t use VAs: Instead of using VAs, one could choose
a seemingly lighter-weight encapsulation such as CDE-
pack [15], a user-level packing system that allows encap-
sulation of an application’s dependencies (e.g., libraries)
along with it. In our opinion, such user-level system is
a less desirable option than VMs. First, it restricts the
OS and hardware on which a consumer can run a pack-
age (e.g., CDEpack claims that its packages run on any
Linux distributions from the past 5 years). Second, it re-
quires perfect prior profiling of all accessible state. Sur-
prisingly, such packaging is not as lightweight as one
might think; packing LibreOffice Writer, an open-source
document editor, with the latest version of CDEpack
(2011) leads to a 117 MB package. For comparison,
vTube typically streams a total of 139 MB for the cor-

responding VA. In our judgement, this modest increase
in state transfer is a small price to pay for a transpar-
ent streaming system that makes the fewest assumptions
about its environment and target applications, and can
thus be used by the most use cases.

2.3 vTube Streaming Model
We thus see that no existing mechanism is adequate for
browsing cloud-source VAs. We have therefore created
a new VA streaming model that is inspired by video
streaming. We describe the parallels below.
Video streaming: Cloud-sourced video services such as
YouTube and Netflix offer nearly instant gratification.
The user experience is simple and effortless. To start, a
user just clicks a URL on the service’s web page. After
a brief startup delay of a few tens of seconds for ini-
tial buffering, the video begins to play. It maintains its
quality (frame rate and resolution) despite unpredictable
variation in network quality. While playing the content,
the video player continues to stream in data. Occasion-
ally, when network quality degrades too much for too
long, the video pauses for additional buffering and then
resumes. Quick launch and sustained rates are preserved
independent of total video size. The prefetch buffer is
primed at startup, after which prefetching occurs contin-
uously in the background.

Video streaming is typically characterized by two
metrics [12]: buffering rate and buffering ratio. Buffer-
ing rate is the number of buffering events per unit of
time. Buffering ratio is the cumulative time wasted in
buffering events divided by total time of play. Together,
these metrics define the performance of the streaming
process when content quality is preserved. Zero is the
ideal value for both.
VA streaming: In vTube, we seek a user experience
for VA streaming that is loosely comparable to video
streaming. There is a brief delay at VA launch, while
a subset of the VA’s initial working set is prefetched,
and then execution begins. As VA execution proceeds,
it may encounter missing state that has to be demand-
fetched from the cloud. Each such event stalls VA execu-
tion. Although an occasional stall may be imperceptible,
an accumulation of back-to-back stalls will be perceived
as a sluggish or unresponsive system by the user. vTube
avoids many of these stalls by prefetching in the back-
ground VA state that will likely be accessed in the near
future. Such predictions are made based on knowledge
accumulated through prior executions of this VA.

Occasionally, mispredictions or lack of prefetching
knowledge may lead to stalls. On other occasions, there
may be accurate prefetching knowledge but it may not
be available soon enough to mask all stalls under current
network conditions. In such situations, we alert the user

to a pause while the missing state is prefetched. Dur-
ing the buffering pause, the user is free to turn his at-
tention elsewhere and to use that brief span of time pro-
ductively. This may be preferable to interacting with a
sluggish VM over that span of time. To quantify inter-
activity in vTube, we adopt the buffering ratio and rate
metrics mentioned above for video streaming.

2.4 Design Goals

To frame the vTube architecture presented in the next
section, we make explicit our design goals below.

Good interactivity over last-mile networks: We tar-
get non-LAN networks such as broadband connections,
4G, or 3G. Typical bandwidths today for such networks
range from 7 Mbps to 20 Mbps [22, 27], while median
RTTs range from 69.5 ms to 120 ms [17, 27]. While last-
mile networks will continue to improve, we posit that the
need for clever prefetching in such networks will persist
as the amount of VA state, such as incorporated datasets,
game scene data, or media content, increases over time.

Bounded VA state transfer: The total size of trans-
ferred state should be within 2x of the accessed state
size. In other words, there should not be a lot of wasted
data transfer. This goal is motivated by our focus on cel-
lular networks, which often have volume-sensitive pric-
ing. Reducing state transfer also improves scalability.

No guest changes: We shun guest OS, library, and appli-
cation changes in VA creation. This allows us to support
the broadest possible range of VAs, across platforms,
languages and applications. We make one exception: we
require guest OSes to provide indication of free memory
pages to the VMM, an option that is not always enabled
by default. While Windows clears pages upon reboot,
making them easy to identify by vTube, Linux requires a
special compile-time option, PAX security, to clear freed
pages. Without this customization, we believe that effi-
cient streaming of RAM images would be beyond reach
on Linux.

Simple VA construction: The creation of VAs must not
rely on fine-tuning for efficient streaming. This reflects
our belief that the success of our system depends on how
easy it is to create VAs for it. While we provide a few
simple rough guidelines to VA producers on how to pre-
pare their VAs (see below), we reject fine-tuning of VAs
by the providers for streaming efficiency. Such fine tun-
ing is likely to prove fragile and hard to maintain over
time. Instead, the algorithms in vTube learn and adapt
to the uniqueness of each VA rather than imposing rigid
constraints.

Server

Client

QEMU-KVM

Virtual Machine

Memory Disk

mmap'ed area Virtual Drive

FUSE

Memory Image Disk Image Deduplicated
Cache

in Local FS

Request Receiver
Applications

FUSE
Implementation

Host
User Level

Host Kernel

WAN

VM State Receiver

Virtual Appliance
Compressed
VM Image
Clustering
Information

Free Memory
Information

Request Handler with
State Transfer and

VM Execution Control

Demand I/O
Routines

VM State Demand Misses

VM State Transfer
VM Execution Control

Figure 1: The vTube architecture. Two components: (1) modified qemu-kvm on the client side and (2) a streaming server on the
VA repository side. The server collects VA access traces and orchestrates streaming decisions.

2.5 Design Assumptions

We next list the key assumptions behind vTube’s design.

Task-specific VAs: We assume that producers encapsu-
late a focused and task-specific workflow in each VA.
This single-task assumption constrains to some degree
the kinds of interactions that a user will have with the
VA. However, VAs can still exhibit significant variabil-
ity of execution paths. For example, a complex game
might have many different scenarios, each with its own
scene graphics or audio data. Moreover, some VAs may
use multiple processes to implement an task, and some
of these processes may be multi-threaded. The asyn-
chrony embodied in this structure adds to the challenges
of prefetching VA state.

Resume rather than cold boot: When constructing the
VA, the owner has a choice of including either just the
disk image or both the RAM and disk images. Our ex-
periments show that in many cases, including a RAM
image with a booted OS results in less state being ac-
cessed than not including a RAM image at all. Moreover,
posting a suspended VA, as opposed to one that requires
booting, is more in-line with our agility goals. For these
reasons, we recommend that producers always include
both RAM and disk images.

Big VAs: We target VAs that range in size from hun-
dreds of MBs to GBs of compressed state. Barring sig-
nificant VA-minimization efforts by their creators, we
expect VAs to grow in size over time.

Agility focus: Creating a production-quality vTube re-
quires attention to many issues that are beyond the scope
of this paper. For example, power consumption on mo-
bile devices when streaming VAs is an important issue.
Service scalability is another important issue. In this pa-
per, we focus on the core issues of agility and interactive

user experience and leave other important issues to fu-
ture work.

3 The vTube Architecture
vTube leverages the qemu-kvm client virtualization
software on Linux, and integrates it into a client-server
architecture as shown in Figure 1. The client uses hash-
based persistent caching and aggressive prefetching as
the crucial mechanisms for agility when browsing VAs
over a last-mile network. Both the memory and disk state
of VAs is cached at 4KB granularity, with compression
applied to network transfers. Persistent caching reduces
data transfers by exploiting temporal locality of access
patterns across current and previous user sessions. The
hash-based cache design further reduces data transfers
by reusing identical content cached from other VAs dur-
ing previous executions.
Prefetching: Relative to LANs, both the high latency
and the low bandwidth of last-mile networks make cache
misses expensive. Prefetching helps in two ways. First,
all or part of the cost of cache miss servicing is over-
lapped with client execution prior to the miss. Second,
prefetching in bulk allows TCP windows to grow to opti-
mal size and thus reduces the per-byte transfer cost. Un-
fortunately, it is well known that prefetching is a double-
edged sword; acting on incorrect prefetching hints can
clog a network with junk, thereby hurting overall perfor-
mance. Erroneous prefetching can also exacerbate the
problem of buffer bloat [13].

In light of these fears of prefetching, the key obser-
vation from our work can be stated as follows: Despite
all the variability and non-determinism of VM execution,
prefetching hints of sufficient accuracy and robustness
can be extracted and applied to make VA browsing over
last-mile networks interactive. This observation does not

suggest that entire disk and memory access traces of
multiple uses of a VA will be identical. Rather, it sug-
gests that short stretches of the traces can be dynami-
cally predicted during VM execution with sufficient ac-
curacy for prefetching. Section 4 presents the details of
the algorithms that enable this prediction. Intuitively, it
is the single-task nature of VAs that makes prefetching
possible. Since a VA enables its users to only perform
a limited number of specific activities, examining pre-
vious execution traces for the VA and abstracting from
them can lead to accurate and robust prefetching hints.
Client structure: A simple client, with lightly modified
qemu-kvm and hash-based persistent cache, accesses
VA state from a cloud-based streaming server. Our mod-
ifications to qemu-kvm enable the client to demand-
page the memory snapshot of a VA from the server,
rather than having to fetch it completely at instance cre-
ation. The disk image is mounted via the FUSE file sys-
tem, and its I/O is redirected to user-level code that han-
dles memory and disk cache misses, as well as prefetch-
ing directives from the server. When the client is paused
for buffering, the user is notified via a client GUI.
Server structure: The algorithmic sophistication and
prefetching control are embodied in the server. It main-
tains three data structures for each VA. First, it main-
tains compressed and deduplicated VM state. Memory
and disk images are split into 4KB chunks and stored in
a compressed form. Associated with each chunk is its
SHA1 value, which is used for deduplication within or
across VAs. Second, the server maintains coarse access
patterns to control prefetching. Using trace analysis, we
organize chunks into coarse-grained clusters, and derive,
store, and use access patterns for them. As shown in Sec-
tion 4, this removes a lot of uncertainty associated with
finer-grained access patterns. Third, the server maintains
a list of free memory chunks (a technique used in previ-
ous work such as [9]), which is obtained by inspecting
the VA for zeroed-out pages or with the help of a tiny
guest kernel module. It submits this list to the client at
the start of a session, through which it avoids requesting
the contents of those free chunks unnecessarily.
VM execution flow: VA use proceeds as follows:
Step 1: When the user initiates a session, the client
fetches VA metadata (virtualized hardware configura-
tions etc.) and a list of free memory chunks from the
server. The server receives from the client a hash list of
its cached chunks, if any, from previous sessions.
Step 2: The server determines what initial state the client
must buffer before it can begin VM execution based on
the prefetching algorithm described in Section 4. It com-
pares the initial chunk set with those already cached on
the client, and transfers chunks it does not have.
Step 3: Once VM execution has started, the client issues

demand fetches to the server if (a) it has not retrieved
the content of a chunk being accessed by the VM, (b)
the chunk is not present in the local cache, and (c) the
chunk is not on the free list.
Step 4: Each demand fetch from the client triggers a pre-
dictive analysis algorithm on the server. When it returns
the requested chunk to the client, the server also deter-
mines what other chunks should be predictively pushed
to the client, and whether the VM must be paused in the
process.
Step 5: After the user has finished using the VA, the
client uploads a timestamped trace of all first-time ac-
cesses to memory and disk chunks. The server processes
the trace to remove the effects of poor network con-
ditions by eliminating time spent waiting for data to
arrive from the network, and uses the resulting “zero-
latency idealized trace” to update its models for predic-
tive streaming.
Prefetch control: The biggest challenge in vTube is dy-
namic control of prefetching so that it helps as much as
possible, but never hurts. In practice, this translates into
two key decisions: (1) choosing what state to predic-
tively stream to minimize application performance hic-
cups during execution; and (2) choosing when and for
how long to pause a VM for buffering. These decisions
must factor in several criteria such as the VA’s histori-
cal behavior, the VA’s current behavior, current network
bandwidth, and the nonlinear behavior of human users.

Tolerating variability and uncertainty is a prerequisite.
Even though each VA is single-task, it is still an en-
semble of software that may include multiple processes,
threads, and code paths interacting in non-deterministic
ways. Moreover, different “paths” users take in interact-
ing with the same application might lead to widely dif-
ferent access traces. Wide variation in networking condi-
tions further adds to variability and uncertainty. We de-
scribe our approach to addressing these challenges in the
next section.

4 VA Prefetching and Streaming
The algorithms vTube uses for extracting prefetching
hints, for deciding (1) what VA state is to be streamed
and (2) when the VM should be paused, are inherently
dynamic in nature. They do not just rely on historical
traces of how a VA has been used in the past, but more
critically, on what its VM is currently doing, and what
network bandwidth is available for streaming state. This
dynamic decision-making is in stark contrast to previous
approaches such as VMTorrent [29] that rely on stat-
ically constructing an “average” trace of historical VA
behavior and using it to inform the order in which disk
chunks must be prefetched.

0 5 10 15 20 25
Time (min)

0

50

100

150

200

250

300

350

400

450

C
u
m

u
la

ti
v
e
 V

M
 S

ta
te

 A
m

o
u
n
t

(M
B

)

Trace 1

Trace 1 - intersection

Trace 2

Trace 2 - intersection

Figure 2: Amounts of VM state accessed by a pair of traces
for the game Riven over time (solid lines). Dashed lines show
the amount accessed in one trace that was also accessed in the
other trace.

0 1 2 3 4 5 6 7 8

0

10

20

30

40

C
lu

st
e
r

ID

0 1 2 3 4 5 6 7 8
Time (min)

0

10

20

30

40

C
lu

st
e
r

ID

Figure 3: Examples of VM state access behavior for Riven.
Each circle represents a VM state cluster, with its radius re-
flecting the cluster size (ranging from 0.5 to 131 MB). Those
clusters in blue are common between the two traces. For clar-
ity, clusters smaller than 0.5 MB are omitted.

4.1 The Case for Dynamic Prefetching

The following key insights demonstrate why static ap-
proaches are not sufficient, and why dynamic algorithms
are needed to construct robust prefetching hints.

1) VA traces contain many similarities, but pairs of
traces can have significant differences in the VA state
they access. Figure 2 shows examples of state accesses
by two executions of the 2D adventure game Riven, in
which the user started a new game. While the dashed
lines show a substantial amount of state common be-
tween the traces, 24-34% of the state accessed by each
execution is unique.

This insight suggests that a static approach that de-
cides what to prefetch before VM execution begins must
either fetch too much state or too little. It would fetch too
much unnecessary state if, like VMTorrent, it chooses to
prefetch the union of all traces; it will fetch too little if
it prefetches only their intersection. Dynamic decision
making is needed if we are to meet our goals of bound-

ing VA state transfer and minimizing waits induced due
to buffering.
2) VM state access occurs in bursts that may appear at
unpredictable times, or in different orders across differ-
ent traces, but is predictable once they begin. Figure 3
illustrates VM state access behavior extracted from the
same two traces of Riven used for Figure 2. It shows that
common clusters (variable-size groups of state chunks,
as described in Section 4.2) can appear at different times
in the two executions, partially maintaining the same or-
dering, while interleaved with unique clusters. Such be-
havior is easily explained using the well known concept
of a working set. Whenever the user initiates a new ac-
tivity, e.g., moving into a new game area or invoking a
print operation on a document, a lot of new state – bina-
ries, libraries, and data – is often needed, resulting in a
flurry of activity.

This insight suggests that while it may not be possi-
ble to accurately predict what the user is going to do
next, and thus the next burst, the first few accesses in
a burst may be enough to adequately predict everything
else that follows. To leverage this insight, vTube needs
two mechanisms: 1) a way to identify clusters of mem-
ory accesses that correspond to distinct user-activity-
driven bursts, and 2) a way to distinguish between clus-
ters whose occurrence is truly unpredictable and clusters
that are likely to follow other clusters, e.g., an add-on
library that is often loaded after the main binary of an
application.
3) Poor performance occurs when memory access bursts
overwhelm the network. Bursty access patterns have yet
another consequence; even if it is possible to predict
the next chunks that will be accessed by a burst based
on the first few accesses, the network must still be fast
enough to deliver these chunks before they are needed
by the VM. The traces in Figure 2 show several exam-
ples of bursts (the near-vertical jumps in the solid lines),
in which the instantaneous demand for VA state would
exceed any last-mile bandwidth available today. If none
of the required state has been prefetched by the client
before the burst occurs, the network will not be able to
prefetch state at the needed rate, leading to expensive de-
mand misses that the VMM must service while the VM
is stalled. In our experience, multiple demand misses in
quick succession lead to serious choppiness of execution
and affect usability. Hence, vTube includes techniques
to dynamically detect such situations before they occur
based on available bandwidth, and pause the VM in an-
ticipation.

4.2 The Prefetching Algorithm
The general outline of vTube’s prefetching algorithm
follows our insights. a) The algorithm derives units of

Time

Cluster A Cluster B Cluster C

Trace

Interval Interval

Figure 4: Clustering in individual traces. Clusters are formed
by grouping chunks accessed one after another within an inter-
val.

A

B

A'

B'

C

Take a pair from
different traces

See if there is
intersecion

Generate new
clusters

A's complement

B's complement

Intersection

Figure 5: Generating clusters out of two traces. Overlapping
clusters from distinct traces are split into disjoint clusters.

VA state called clusters that are likely to be accessed
in their own bursts. b) When the VM accesses state be-
longing to a certain cluster, the algorithm determines a
set of clusters to be transferred together. c) Finally, the
algorithm uses current network bandwidth to decide how
this transfer is overlapped with VM execution, minimiz-
ing the user wait time. The first step is performed offline
for each VA, using its collected execution traces. The
other two steps are done online, as the VM executes.

4.2.1 Clustering VM State (offline)

Clusters are variable-size units of VM state transfer, and
consist of 4KB disk or memory chunks that are accessed
together. Figures 4 and 5 illustrate the process of gen-
erating clusters from traces. We construct clusters for
each individual trace by grouping chunks accessed one
after another within a clustering interval (which is 2 sec-
onds in our prototype, selected empirically). Next, we
merge common clusters across different traces, replacing
each pair of overlapping clusters with three disjoint clus-
ters: the intersection and the complements of the orig-
inal clusters. Finally, the newly generated clusters are
checked again with the clustering interval, and split fur-
ther into separate clusters as appropriate.

The rationale behind clustering is two-fold. As we de-
scribe next, we exploit properties associated with the
clusters for making efficient VM state transfer deci-
sions. Clustering also makes VM state access analysis
coarse enough to be computationally affordable for vir-
tual appliances with well-focused target workloads, such
as those described in Section 5, while still allowing for
fairly fine-grained state transfer. Without clustering, for
example, tens of thousands of 4KB chunks are typically
accessed in one session, and analyzing billions of result-
ing pairs would easily require substantial computational
resources, especially more than tens of GB of memory.

17

3

8

10

6

2

13

4

15

7

18

1

Lookout
Window

Currently Accessed Cluster
Selected for Transfer
Not Selected

Smaller
Cluster

Larger
Cluster

Lower
Probability

Higher
Probability

Figure 6: Cluster selection for buffering and streaming. Clus-
ter 1 contains a chunk being accessed, and blue clusters are
selected for transfer together with the cluster.

4.2.2 Cluster Predictions (online)

When the VM demand fetches a chunk contained in a
particular cluster, we identify a set of clusters deemed
necessary in the near future and send it together with the
accessed cluster. This selection is based on relations be-
tween clusters reflecting VM access demands and tran-
sitions observed in prior traces. Specifically, each rela-
tion involves two measures: an interval and a probabil-
ity. The interval defines how soon a cluster is expected
to be accessed after another. We use a conservative met-
ric of the minimal interval observed in the traces. The
probability represents how likely this succession of ac-
cesses occurs. For each ordered cluster pair, these two
measures are obtained from the traces.

The process of identifying the cluster set is illustrated
in Figure 6, in which Cluster 1 is being accessed. First,
from a practical perspective of not trying to estimate
the infinite future, we have a time frame called lookout
window, and consider those clusters whose interval falls
within this window from the currently accessed cluster.
Then, we select a subset of these clusters based on their
probability and size. To do so, we exploit a key intuition
that accesses to small clusters often appear random and
are hard to predict, while the cost of retrieving them is
low. Taking this into account, we retrieve smaller clus-
ters more opportunistically and larger clusters more con-
servatively. We perform this by reflecting the distribution
of cluster sizes in a threshold applied to probability. Let
us consider two clusters, with identifiers X and Y . Upon
the demand miss of a chunk in X , we select Y for re-
trieval if the following condition is satisfied:

P(Y |X)> Percentile(Size(Y))

P(Y |X) is the probability of Y following X .
Percentile(Size(Y)) is the percentile of the size of
Y ; in other words, it represents the the fraction of all
chunks that belong to a cluster whose size is smaller
than that of Y . Figure 7 shows this percentile for varied
size of Y , for one of the VAs used in our evaluation,

22 24 26 28 210 212 214 216 218

Cluster Size (KB)
0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
m

ul
at

iv
e

Pr
ob

ab
ili

ty

Figure 7: Example of cluster size distribution (for a VA with
the game Riven). The x-axis is on a log scale.

TimeCurrent

Estimated Bandwidth
RequirementBandwidth

Available
Bandwidth

Buffer Stream

1
7

10
18 13 2

Figure 8: Buffering/streaming decision of selected clusters.
Circles represent the set of clusters selected for transfer.

Riven. In this example, if the size of Y is 4 MB, P(Y |X)
needs to be greater than approximately 0.5 for it to be
retrieved with X.

4.2.3 Cluster Buffering and Streaming (online)

Finally, with the set of clusters for retrieval decided
as described in the previous section, we create an esti-
mate of VM state access demands using cluster intervals.
Based on this estimate, we decide part of the set that is
buffered, while streaming the rest in the background of
VM execution. Figure 8 summarizes how we derive ac-
cess demands. We order the clusters in the set according
to their intervals to the currently accessed cluster (Clus-
ter 1). Then, we calculate a point after which currently
available bandwidth can transfer the remaining clusters
without expecting to incur demand misses. We buffer the
clusters up to this point, while suspending VM execu-
tion. Once the available bandwidth appears to be suf-
ficient for ensuring retrieval of chunks before their ac-
cesses, we switch to streaming the remaining chunks.

An overall flow of the algorithm is illustrated in Fig-
ure 9. Upon each state demand miss, the process de-
scribed above is triggered, resulting in a buffering period
followed by streaming of VM state. Note that those de-
mand misses are the first read access to a certain chunk,
and not subsequent reads or any writes, which do not re-
quire VM state transfer. In particular, we keep track of
writes at the disk block granularity and cache the writ-
ten contents, avoiding the retrieval of a chunk even when
partial writes occur to it.

Additionally, we use an optimization in which the
client notifies the server of a currently accessed chunk

TimeDemand Miss Demand MissFeedback

Timer Duration
for Stream Hint

Extended Stream

Figure 9: Overall flow of the vTube algorithm with streaming
feedback from the client.

periodically. For this chunk, the server triggers stream-
ing of a set of clusters derived in the same manner, with
the exception that VM execution is not suspended for
buffering. This helps extending streaming when there is
no demand miss for an extended period of time to trigger
further VM state transfer.

5 Evaluation
We focus our evaluation on three critical questions,
which evaluate the core contributions of our paper:

Q1: How interactive is vTube in real-use scenarios,
such as real applications, networks, and users?
(Section 5.2)

Q2: How accurate is vTube’s prefetching? (Section 5.3)

Q3: How does vTube’s performance compare to that of
other VA streaming systems? (Section 5.4)

We next describe our methodology to answer these ques-
tions.

5.1 Experimental Methodology
We evaluate vTube in multiple network and workload
settings. All experiments were conducted with a server
running in Pittsburgh PA, and a client laptop in various
locations with different network conditions. The server
was equipped with an 8-core Intel Core i7 at 3.40GHz
and 32GB RAM, while the client laptop had a dual-core
Intel Core 2 Duo CPU at 2.40GHz and 4GB RAM. All
measurements were performed with no cached VA state
on the client side. Also, we set the lookout window size
and timer duration for stream hints to 16 and 2 minutes,
respectively.
Experimental networks: Figure 10(a) shows the vari-
ous network environments we tested. For controlled ex-
periments, we used Linktropy [1], a dedicated network
emulator, to construct the two emulated networks la-
beled “14.4 Mbps” and “7.2 Mbps.” We chose the char-
acteristics of these networks based on reports on US
nation-wide average bandwidth from Akamai [22] and

Label Type Bandwidth RTT

7.2 Mbps emulated 7.2 Mbps 120 ms

14.4 Mbps emulated 14.4 Mbps 60 ms

3G real 8-12 Mbps 52-113 ms

4G real 1-29 Mbps 96 ms

Taiwan (good) real 7-25 Mbps 220 ms

Taiwan (fair) real 4-9 Mbps 220 ms

Coffee Shop real 5-7 Mbps 14-175 ms

(a) Experimental Networks

VA Description OS
Total Size

(compressed)
Download Time
(7.2 / 14.4 Mbps)

Mplayer video payback Linux 4.6 GB 87 min / 44 min

Avidemux video edit Linux 5.1 GB 97 min / 49 min

Arcanum game Win XP 6.9 GB 131 min / 66 min

Riven game Win 7 8.0 GB 152 min / 76 min

HoMM4 game Win 7 5.6 GB 106 min / 53 min

Selenium browsing Linux 4.4 GB 83 min / 42 min

Make compilation Linux 4.6 GB 88 min / 44 min

(b) Experimental VAs

Figure 10: Summary of our network set-ups (a) and virtual appliances (b).

bandwidth/latency studies over mobile networks [17,
27]. In addition to controlled experiments, we also re-
port results over real networks, including: (1) domestic
AT&T 3G and 4G LTE (labeled “3G” and “4G” in the
figure), (2) overseas broadband connections through two
public Wi-Fi’s (labeled “Taiwan”), and (3) a public Wi-
Fi at a local coffee shop.
Virtual appliances: We constructed seven VAs high-
lighting different use cases, workloads, and evaluation
metrics. All VAs had 1GB memory and a 10-20GB disk.
The VAs and their metrics are described below, while
some of their properties are shown in Figure 10(b):

1. Mplayer: mplayer on Linux plays a 5-minute,
84-MB AVI video file. Evaluate frames per second
(FPS).

2. Avidemux: Avidemux, a Linux video editing ap-
plication, batch-converts eight MP4 files, locally
supplied and 698 MB in total, to AVI format. Eval-
uate conversion times.

3. Arcanum: Contains Arcanum [2], a 2D role-playing
game on Windows XP. Report manual experience.

4. Riven: Contains Riven [5], a 2D adventure game on
Windows 7. Report manual experience.

5. HoMM4: Contains Heroes of Might and Magic
IV [3], a 2D strategy game on Windows 7. Report
manual experience.

6. Selenium: Firefox, along with an automation Se-
lenium script [6], browses through an HTML copy
of Python documentation. Evaluate the speed of
page traversal over time.

7. Make: Compiles Apache 2.4.4 source code, lo-
cally supplied, on Linux. Evaluate compilation
time.

Figure 10(b) shows the VAs’ compressed sizes and the
times for full download over our emulated networks. All
VAs are large and while some might be optimizable, the
three games Riven, Arcanum, and HoMM4, have inher-
ently large installation package sizes: 1.6, 1.1, and 0.9
GB, respectively. The full download of a VA would thus

0 5 10 15 20
Time (min)

3G

4G

Taiwan
(Good)

Taiwan
(Fair)

Coffee
Shop

Figure 11: Visualization of sample Riven runs on real net-
works. Note that each workload is a manual game play, and
thus is not directly comparable to another.

take 40 minutes to 2.5 hours, an aspect that vTube dra-
matically improves.
VA histories: To create histories for these VAs, we
manually collected 10 traces for all except for Make
and Riven, for which we collected 6 and 16 traces, re-
spectively. We intentionally introduced variability in the
workloads. For example, Mplayer traces include various
play modes, such as skipping, pausing, and speed-up in
addition to regular playback. Avidemux traces involve
converting video and audio to different formats. Ar-
canum and Riven include game plays from the beginning
and from different save data files. HoMM4 traces con-
sist of tutorial plays with different difficulty levels. Sele-
nium traces have different behaviors such as looking at
different content, searching, or clicking on links. Make,
a particularly low-variance workload, requires only few
traces.

5.2 Interactivity Evaluation (Q1)
To evaluate vTube’s interactivity, we first show a few
sample runs, which help build up intuition about its be-
havior in practice, after which we evaluate application
performance more systematically.
Sample runs: Figure 11 shows sample runs of the Riven
VA over various real networks. For each run, black con-
tinuous lines indicate periods of uninterrupted execu-
tion, while gray interruptions indicate when VA execu-
tion is stalled either due to explicit buffering periods or

VA Network
Launch

Time
(sec)

Workload
Completion
Time (sec)

Overhead
on Local
(no net)

Avidemux

Wired 6 75 54.6%

14.4
Mbps 26 67 39.5%

7.2
Mbps 52 65 33.8%

Make

Wired 7 420 2.8%
14.4
Mbps 17 407 -0.4%

7.2
Mbps 32 411 0.4%

(c) Avidemux, Make Runtimes(b) Selenium Browsing Rate(a) Mplayer Frames Per Second (FPS)

0

10

20

30
FP

S

Local

0

10

20

30

FP
S

Wired

0

10

20

30

FP
S

14.4Mbps

0 100 200 300 400 500
Time (sec)

0

10

20

30

FP
S

7.2Mbps

0 50 100 150 200 250 300 350
Time (sec)

0

20

40

60

80

100

120

140

C
u
m

u
la

ti
v
e
 P

a
g
e
 C

o
u
n
t

Local
Wired
14.4Mbps
7.2Mbps

Figure 12: Evaluation of application-level metrics. The figures compare execution over vTube to execution out of a local VA
without vTube (“Local”) and execution over a direct-wire link with pure demand fetching and no prefetch (“Wired”).

memory demand fetches. Most demand-fetch stalls are
short, approximately equal to the RTT and on their own,
and typically not visible on the graph (nor to the user,
in our experience). Durations of buffering periods vary
widely. All executions follow a similar pattern; after a
relatively long initial buffering period (25-175 seconds,
depending on bandwidth), vTube occasionally pauses
executions for periods up to 20 seconds. For example,
the 4G run has one pause longer than 10 sec, five 1-10
sec pauses, and five sub-second pauses.

Application performance evaluation: Figure 12 shows
application-level performance metrics for the subset of
VAs that support scripted workloads and metrics as de-
scribed in Section 5.1. For each VA, we report two tim-
ings: (1) launch time, measured from VM resume un-
til the workload can start and (2) workload comple-
tion time excluding the launch time. We report averages
over three runs for Avidemux/Make and individual runs
for Mplayer/Selenium. We compare the results of using
vTube over the two emulated networks with two base-
lines: a) execution from a locally supplied VA without
vTube, and b) execution using a pure demand-fetch sys-
tem over a fast direct-wire connection.

Figure 12(a) shows the evolution of Mplayer’s FPS
over time as a video is played. The video’s native FPS
is 25.0, and local VM execution preserves it. In the
demand-fetch case, video playback starts with a delay
of 16.3 seconds. On vTube, video playback starts with a
delay of 92.5 and 183.3 seconds to launch for the 14.4
Mbps and 7.2 Mbps cases, respectively. However, once
the playback has launched, vTube maintains its FPS
close to native, with only one or two short interruptions
depending on the network. Figure 12(b) shows a similar
effect for Selenium: after 60.2 and 114.6-second launch
times for the 14.4Mbps and 7.2Mbps networks, respec-
tively, the automated browsing script sustains a progress
rate that is close to the ideal.

Finally, Figure 12(c) shows the results for Avidemux
and Make, and the increase in completion time com-
pared to local VM execution (overhead). After some

tens of seconds of initial buffering, vTube’s workload-
runtime overheads remain tiny for the Apache compi-
lation (under 0.4%) and reasonable for the Avidemux
workload (under 40%) across both networks. The dif-
ference in overheads is driven by differences in vTube’s
prefetching accuracy, which in turn is driven by the dif-
ference in the degree of variance inherent in the two
workloads. Section 5.3 expands on this.

Placed in the context of VA sizes and download statis-
tics from Figure 10(b), vTube’s interactivity improve-
ments are dramatic. Instead of having to wait over 44
minutes to fetch a VA over a 14.4 Mbps network – a
bandwidth twice the US national average [22] – a vTube
user waits between some tens of seconds to a couple of
minutes to launch the VA, after which his interactions
are close to ideal, except for a few explicit but short in-
terruptions. This is, in our opinion, a significant achieve-
ment. However, a key question remains: is this good
enough for end-users, have we achieved a “usable” sys-
tem yet? While we lack a formal answer to this question,
we address it anecdotally next.
Anecdotal user experience: To gain some context about
interactivity, we informally tried out vTube with four
users: two co-authors and two Ph.D. students outside of
the project. All users played our two game VAs – Riven
and Arcanum – over two public Wi-Fi networks in Tai-
wan (see Figure 10(a)), and were asked to rate their in-
teractions as {bad — fair — good — very good}.

Three out of the four users (the two co-authors and
one non-author) rated their executions with both games
as either good or very good. In particular, the non-author
rated his executions of both games as very good and did
not mind the buffering periods on the “Taiwan (good)”
network. The fourth user (the other non-author) ran over
the “Taiwan (fair)” network and rated his executions for
Arcanum and Riven as good and fair, respectively. For
visualization, traces labeled “Taiwan (Good)” and “Tai-
wan (Fair)” in Figure 11 represent the executions rated
very good and fair, respectively, by the two non-authors.
Summary: Our application evaluation and anecdotal ex-

VA

Workload
Duration

(sec)

Accessed
State
(MB)

Fetch Ratio
(fetched /
accessed

state)

Buffering
Ratio

(buf time /
total time)

Buffering
Rate

(# buf events
/ minute)

Miss Rate
(# misses /
accesses)

Mplayer 500 316 (2.4%) 1.03 0.33 0.24 0.20%

Avidemux 127 103 (0.8%) 1.33 0.39 1.88 0.82%

Arcanum 920 87 (0.8%) 1.51 0.04 0.41 0.40%

Riven 1223 379 (1.8%) 1.49 0.21 0.46 0.70%

HoMM4 926 256 (1.2%) 1.41 0.15 0.37 1.96%

Selenium 332 155 (1.2%) 1.45 0.31 0.96 0.12%

Make 451 76 (0.6%) 1.01 0.06 0.35 0.66%

(a) Whole-System Accuracy.

1 2 3 4 5 6 7 8 9 10
Trace Count

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
is

s
R

a
te

Avidemux (Linux)

mplayer (Linux)

Riven (Win7)

Selenium (Linux)

Arcanum (WinXP)

make (Linux)

HoMM4 (Win 7)

(b) Miss Rates with Number of Traces.

Figure 13: Accuracy evaluation. Results are over a 7.2Mbps/120ms emulated network. In (a), the numbers are the average of three
runs. State amounts are those that require transfer, and reported as raw values (uncompressed, non-deduplicated).

perience suggest that vTube provides interactive access
to cloud-sourced VAs over WAN and mobile networks.
Acknowledging that a rigorous user study is required to
prove this aspect, we next turn to evaluating prefetch ac-
curacy.

5.3 Prefetching Accuracy Evaluation (Q2)
To measure the accuracy of vTube’s prefetching predic-
tions, we rely on several standard metrics: fetch ratio,
buffering ratio, buffering rate, and miss rate. Together,
these metrics reflect how close our system’s access pre-
dictions are to reality. Figure 13(a) evaluates these met-
rics against our seven VAs. The graph proves two points.
First, independent of vTube, the amount of accessed
state in any trace is tiny compared to the total VA state
(no greater than 2.4% across all VAs), which justifies
the need for accurate prefetching. Second, with vTube,
the four metrics indicate very good accuracy for low-
variance workloads and reasonable accuracy for higher-
variance ones. We analyze each metric in turn.
Fetch ratio: The fetch ratio – the ratio of the amount of
state fetched to the amount of state accessed – quanti-
fies how much state is fetched needlessly. While some
over-fetching is unavoidable, too much can affect inter-
activity and network load. Figure 13(a) shows that fetch
ratio in vTube remains under 2.0, a value that we deem
reasonable. For fixed workloads, such as Mplayer and
Make, fetch ratios are particularly low (under 3% over-
head). For higher-variance workloads, such as games,
the amount of over-fetch is highest (up to 51%). Over-
all, vTube meets our goal of bounded VA state transfer
(Section 2.4).
Buffering ratio and rate: Buffering ratio and rate quan-
tify the total time the user wastes waiting for buffer-
ing and the frequency of buffering interruptions, respec-
tively. Lower numbers are better. With the exception of
Avidemux, the user wastes little time, between 6 and
33%, during his interaction with the VM. The Avidemux
workload has a particularly short running time, which

justifies the higher buffering ratio (39%). As a general
rule, the longer the user’s interaction with the VM, the
lower the overall buffering overhead will be, as the in-
vestment in an initial, long buffering period amortizes
over time. Buffering events are also relatively rare across
all VAs, as shown by the “Buffering Rate” column: less
than one buffering period per minute except for Avide-
mux.

Miss rates: The miss rate – the ratio of the number
of chunks demand-fetched to the number of chunks ac-
cessed – remains under 2% for all traces. While the
absolute number of misses is non-negligible, our ex-
perience suggests that individual misses do not signif-
icantly degrade user experience, unless they occur one
after another. Our algorithm makes state transfer deci-
sions based on previous VM executions, and hence miss
rates are heavily influenced by the coverage of accessed
chunks in the available trace set. We examine this influ-
ence next.

Impact of trace sets on miss rates: Figure 13(b) shows
how the miss rate changes with different subsets of
traces included in the training set. We compute the miss
rate using results of our emulated network experiments.
With 10 traces, the coverage is high enough to achieve
low miss rates for our VAs: under 0.65% for all VAs
other than Riven and HoMM4, for which the miss rates
are 2.6% and 1.4%, respectively. With fewer traces, miss
rates vary dramatically depending on the VA. For Make,
which has a fixed workload, the miss rate is particularly
low even with 6 traces (0.12%). (Note that these num-
bers are statically computed from traces, whereas the
miss rates in Figure 13(b) (a) are affected by access tim-
ings.)

Summary: These results indicate that, given sufficient
trace sets, vTube’s prefetching is accurate enough to
limit wasteful transfers and curtail excessive user delays
due to buffering or missed predictions. We next show
that existing techniques do not even come close to these
achievements.

VA System
Workload
Duration

(sec)

Accessed
State
(MB)

Fetched
State
(MB)

Total
Buffering
Time (sec)

Miss Rate
(# misses /
accesses)

Arcanum
vTube 920 87 131 39 0.40%
VMTorrent 924 84 230 12 0.89%

Riven
vTube 1223 379 566 255 0.70%
VMTorrent 1222 222 1051 980 0.02%

HoMM4
vTube 926 256 360 136 1.96%
VMTorrent 927 262 384 54 1.31%

Figure 14: Comparison to VMTorrent. The numbers are the
average of three runs. State amounts are those that require
transfer, and reported as raw values (uncompressed, non-
deduplicated).

5.4 Comparison to VMTorrent (Q3)

We compare against VMTorrent, the closest related
work, by implementing its prefetching logic in vTube
while retaining our largely orthogonal optimizations re-
lated to compression, deduplication, and streaming. For
each VA, the new system creates a static streaming plan
that includes all chunks that have been accessed in at
least one previous trace ordered by the average time at
which they were first accessed in those traces (see Sec-
tion 2.2.3 of [29]).

Figure 14 shows the comparison of the two systems
for the Arcanum, Riven, and HoMM4 VAs executed over
our 7.2Mbps/120ms network. In the comparisons, we
keep the total wall-clock time that the user interacts with
each system roughly constant: 15 min for Arcanum and
HoMM4, and 20 min for Riven (column “Workload Du-
ration”). Overall, the results demonstrate that VMTor-
rent is much less precise in its prefetching than vTube for
both VAs. For example, in Arcanum, while the amount
of state accessed by each execution is similar (≈85MB),
VMTorrent fetches 1.8 times more state as vTube, re-
sulting in a fetch ratio of 2.76 for VMTorrent vs. 1.51
for vTube. For Riven, the difference is even more dra-
matic: 4.73 for VMtorrent vs. 1.49 for vTube. HoMM4
has a smaller degree of workload variety in its traces, re-
sulting in comparable fetch ratios of 1.41 for vTube vs.
1.47 for VMTorrent.

These overheads have two effects: (1) they strain the
network and (2) they force users to wait, thus hamper-
ing the fluidity of VA access. For example, as shown
in the column “Total Buffering Time” for Riven, VM-
Torrent forces the user to wait for over 16 minutes out
of a 20-minute session (80%). In contrast, vTube lim-
its user waiting to only about 4 minutes out of 20 min-
utes (or 21%). An effect of this aspect is visible in the
figure: because the user spent a lot more time playing
Riven rather than waiting for buffering, the amount of
accessed state by vTube (379MB) is much higher than
the amount of state accessed by VMTorrent (222MB).
Thus, vTube’s precise prefetching decreases wasted time
and (arguably) increases the user’s productivity.

5.5 Summary
We have shown that vTube provides interactive access
to cloud-sourced VAs even over some of today’s most
challenging networks, such as 3G, 4G, and WAN. Its
prefetching mechanism is more precise than existing
systems. The key assumption in vTube is the availability
of suitable trace sets. For best user experience, a vTube
deployment could refrain from streaming new VAs to
low-bandwidth users until trace sets with sufficient cov-
erage have been gathered from high-bandwidth users.

6 Related Work
We have already covered some related work in Sec-
tion 2.2. We first summarize our contributions vis-a-vis
that work, after which we discuss other related work.
Overall, vTube is unique in two ways. First, it focuses
on a new class of agile interactive workloads, namely
browsing a large collection of VAs. “Browsing” here in-
cludes rapid launch of a VA instance at the whim of the
user, some period of interaction with that instance, fol-
lowed by abandonment of that instance and change of
focus to another VA. This is completely different from
today’s workloads, where VA instances are long-lived
and launching one on impulse is rare. Second, vTube as-
pires to support this new style of browsing over cellular
wireless networks that have challenging bandwidth, la-
tency and jitter characteristics. We are not aware of any
other work that addresses these two major challenges.

Closest in spirit to our work is VMTorrent [29], which
uses P2P streaming techniques to deliver VAs on de-
mand. It also uses profile-based prefetching and block
prioritization, along with a number of other well-known
I/O mechanisms, to speed VA launch. Our focus on last-
mile networks implies that a P2P strategy is not useful: it
can only help if the bottlenecks are on individual WAN
paths from the cloud and replica sites to the edge. A re-
lated approach that uses a hash-based content distribu-
tion network is described by Peng et al [28], but it is
also inadequate for last-mile networks.

More broadly, we have benefited from the rich body of
work on efficient state transfer and rapid launch of VMs
that has been published over the last decade. Our work
has been influenced by the Collective [10, 32, 33, 34],
Moka5 [4], Snowflock [20], Kaleidoscope [9], Xen live
migration [11], and the Internet Suspend/Resume sys-
tem [18, 36]. From these systems, we have leveraged
techniques such as demand-driven incremental VM state
transfer, a FUSE-based implementation strategy, hash-
based persistent caching of VM state, and transfer of live
execution state. vTube extends these mechanisms with
prefetching and streaming to achieve agile access to a
cloud-based VA repository.

We have also benefited from the lessons learned
about caching and prefetching in the context of dis-
tributed file systems for bandwidth-challenged environ-
ments [14, 16, 25, 26], high performance I/O [8], and
multiprocessor systems [24]. Previous work in the area
of file systems has also investigated prefetching based on
access pattern analysis [14, 23], which could potentially
apply to and augment our scheme in a complementary
manner. Besides actual analysis procedures, our work
also differs from such work in the scope of application,
considering the notion of VM execution together with
prefetching. vTube’s browsing model was inspired by
the Olive project’s vision of archiving executable con-
tent [35].

7 Conclusion
Cloud-sourced executable content has grown in signifi-
cance as the benefits of VM encapsulation have become
more apparent. Unfortunately, the large size of VAs has
constrained their use in environments where network
quality is constrained. The mobile edge of the Internet
is the most obvious example of such an environment.
Accessing large VAs over such networks, especially in
the highly agile manner required for browsing, appears
to be a fool’s dream.

In this paper, we have shown that a set of carefully-
crafted, novel prefetching and streaming techniques can
bring this dream close to reality. We have constructed
vTube, a VA repository that supports fluid interactions.
On vTube, a user can browse and try out VAs seam-
lessly and without much wait, just like he would browse
and try out for videos on YouTube. The essence of our
techniques boils down to a key observation: that de-
spite all uncertainty and variability inherent in VA exe-
cutions, prior runs of the same VA bear sufficient predic-
tive power to allow for efficient buffering and streaming
of VA state. With controlled experiments and personal
experience, we show that vTube can achieve high in-
teractivity even over challenging networking conditions
such as 3G, and in doing so it far outperforms prior sys-
tems.

8 Acknowledgements
We thank the Olive team for inspiring this work, and es-
pecially Benjamin Gilbert and Jan Harkes for their valu-
able technical discussions on Olive implementation. We
thank Da-Yoon Chung for his help with trace collection,
Athula Balachandran for her guidance on video stream-
ing performance metrics, and Kiryong Ha and Zhuo
Chen for their feedback on the usability of our system.
We thank our shepherd Ken Yocum and the anonymous

reviewers for their valuable comments and suggestions
for improving the presentation of the paper.

This research was supported by the National Science
Foundation (NSF) under grant numbers CNS-0833882
and IIS-1065336, by an Intel Science and Technology
Center grant, by DARPA Contract No. FA8650-11-C-
7190, and by the Department of Defense (DoD) un-
der Contract No. FA8721-05-C-0003 for the operation
of the Software Engineering Institute (SEI), a federally
funded research and development center. This material
has been approved for public release and unlimited dis-
tribution (DM-0000276). Additional support was pro-
vided by IBM, Google, and Bosch. Any opinions, find-
ings, conclusions or recommendations expressed in this
material are those of the authors and should not be at-
tributed to their employers or funding sources.

References
[1] Apposite Technologies :: Linktropy 5500 WAN

Emulator. http://www.apposite-tech.
com/products/5500.html.

[2] Arcanum product page (archived). http:
//www.gog.com/game/arcanum_of_
steamworks_and_magick_obscura.

[3] Heroes of Might and Magic IV. http:
//www.gog.com/game/heroes_of_
might_and_magic_4_complete.

[4] MokaFive Home Page. http://www.
mokafive.com.

[5] Riven: the sequel to Myst. http:
//www.gog.com/gamecard/riven_
the_sequel_to_myst.

[6] Selenium - Web Browser Automation. http://
docs.seleniumhq.org.

[7] Netflix Streaming Bandwidth Lev-
els/Requirements. http://
watchingnetflix.com/home/2012/08/
streaming-bandwidth-requirement/,
Aug. 2012.

[8] A. Brown, T. Mowry, and O. Krieger. Compiler-
based I/O Prefetching for Out-of-Core Applica-
tions. ACM Transactions on Computer Systems,
19(2), May 2001.

[9] R. Bryant, A. Tumanov, O. Irzak, A. Scannell,
K. Joshi, M. Hiltunen, A. Lagar-Cavilla, and
E. de Lara. Kaleidoscope: Cloud Micro-elasticity
via VM State Coloring. In Proceedings of the Sixth

Conference on Computer Systems (EuroSys 2011),
Salzburg, Austria, April 2011.

[10] R. Chandra, N. Zeldovich, C. Sapuntzakis, and
M. Lam. The Collective: A Cache-Based System
Management Architecture. In Proceedings of the
Second Symposium on Networked Systems Design
and Implementation, May 2005.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migra-
tion of virtual machines. In Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 273–
286, 2005.

[12] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph,
A. Ganjam, J. Zhan, and H. Zhang. Understanding
the Impact of Video Quality on User Engagement.
In Proceedings of the ACM SIGCOMM 2011 Con-
ference, Toronto, ON, 2011.

[13] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers
in the Internet. Communications of the ACM,
55(1), January 2012.

[14] J. Griffioen and R. Appleton. Reducing File Sys-
tem Latency Using a Predictive Approach. In Pro-
ceedings of the USENIX Summer 1994 Technical
Conference, Boston, MA, 1994.

[15] P. J. Guo and D. Engler. CDE: Using System
Call Interposition to Automatically Create Portable
Software Packages. In Proceedings of the 2011
USENIX Annual Technical Conference, June 2011.

[16] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and Performance in a Distributed File Sys-
tem. ACM Transactions on Computer Systems,
6(1), February 1988.

[17] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. A close examination of perfor-
mance and power characteristics of 4G LTE net-
works. In Proceedings of the 10th international
conference on Mobile systems, applications, and
services, MobiSys ’12, pages 225–238, New York,
NY, USA, 2012. ACM.

[18] M. A. Kozuch and M. Satyanarayanan. Internet
Suspend/Resume. In Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and
Applications, Callicoon, NY, June 2002.

[19] D. Kreutz and A. Charao. FlexVAPs: a sys-
tem for managing virtual appliances in heteroge-
neous virtualized environments. In Latin American

Network Operations and Management Symposium
(LANOMS), 2009.

[20] H. A. Lagar-Cavilla, J. Whitney, A. Scannell,
P. Patchin, S. Rumble, E. de Lara, M. Brudno,
and M. Satyanarayanan. SnowFlock: Rapid Virtual
Machine Cloning for Cloud Computing. In Pro-
ceedings of EuroSys 2009, Nuremberg, Germany,
March 2009.

[21] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scan-
nell, P. Patchin, S. M. Rumble, E. de Lara,
M. Brudno, and M. Satyanarayanan. Snowflock:
rapid virtual machine cloning for cloud computing.
In Proceedings of the 4th ACM European confer-
ence on Computer systems, EuroSys ’09, pages 1–
12, New York, NY, USA, 2009. ACM.

[22] F. Lardinois. Akamai: Average U.S. Internet
Speed Up 28% YoY, Now At 7.4 Mbps, But South
Korea, Japan And Hong Kong Still Far Ahead.
TechCrunch, April 23 2013.

[23] Z. Li, Z. Chen, and Y. Zhou. Mining block cor-
relations to improve storage performance. Trans.
Storage, 1(2):213–245, May 2005.

[24] T. Mowry. Tolerating Latency in Multiproces-
sors through Compiler-Inserted Prefetching. ACM
Transactions in Computer Systems, 16(1), Febru-
ary 1998.

[25] L. B. Mummert, M. R. Ebling, and M. Satya-
narayanan. Exploiting Weak Connectivity for Mo-
bile File Access. In Proceedings of the 15th ACM
Symposium on Operating System Principles, Cop-
per Mountain, CO, December 1995.

[26] R. H. Patterson, G. A. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed Prefetching
and Caching. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, Cop-
per Mountain, CO, October 1995.

[27] PCMag. Fastest mobile networks 2013.
http://www.pcmag.com/article2/0,2817,2420333,00.asp,
2013.

[28] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN:
Virtual Machine Image Distribution Network for
Cloud Data Centers. In Proceedings of Infocom
2012, Orlando, FL, March 2012.

[29] J. Reich, O. Laadan, E. Brosh, A. Sherman,
V. Misra, J. Nieh, and D. Rubenstein. VMTorrent:
Scalable P2P Virtual Machine Streaming. In Pro-
ceedings of CoNEXT12, Nice, France, December
2012.

[30] Ricardo A. Baratto and Jason Nieh and Leo Kim.
THINC: A Remote Display Architecture for Thin-
Client Computing. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles
(SOSP), Brighton, UK, October 2005.

[31] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing. IEEE In-
ternet Computing, 2(1), Jan-Feb 1998.

[32] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zel-
dovich, J. Chow, M. S. Lam, and M. Rosenblum.
Virtual appliances for deploying and maintain-
ing software. In Proceedings of the Seventeenth
Large Installation Systems Administration Confer-
ence (LISA 2003), October 2003.

[33] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,
M. Lam, and M. Rosenblum. Optimizing the Mi-
gration of Virtual Computers. In Proceedings of
the 5th Symposium on Operating Systems Design
and Implementation, Boston, MA, Dec 2002.

[34] C. Sapuntzakis and M. Lam. Virtual Appliances in
the Collective: A Road to Hassle-free Computing.
In Workshop on Hot Topics in Operating Systems
(HOTOS), May 2003.

[35] M. Satyanarayanan, V. Bala, G. S. Clair, and
E. Linke. Collaborating with Executable Content
Across Space and Time. In Proceedings of the 7th
International Conference on Collaborative Com-
puting: Networking, Applications and Workshar-
ing (CollaborateCom2011), Orlando, FL, October
2011.

[36] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia,
A. Surie, D. R. O’Hallaron, A. Wolbach, J. Harkes,
A. Perrig, D. J. Farber, M. A. Kozuch, C. J. Hel-
frich, P. Nath, and H. A. Lagar-Cavilla. Per-
vasive Personal Computing in an Internet Sus-
pend/Resume System. IEEE Internet Computing,
11(2), 2007.

[37] S. Shankland. VMware opens virtual-appliance
marketplace. CNET News, November 7 2006.

