
On-Demand View Materialization and Indexing for
Network Forensic Analysis

Roxana Geambasu1, Tanya Bragin1, Jaeyeon Jung2, and Magdalena Balazinska1

1 Department of Computer Science and Engineering 2 Mazu Networks
University of Washington, Seattle, WA Cambridge, MA

{roxana,tbragin,magda}@cs.washington.edu jyjung@mazunetworks.com

Abstract

Today, network intrusion detection systems (NIDSs) use
custom solutions to log historical network flows and support
forensic analysis by network administrators. These solutions
are expensive, inefficient, and lack flexibility. In this paper,
we investigate database support for interactive network foren-
sic analysis. We show that an “out-of-the-box” relational
database management system (RDBMS) can support moderate
flow rates in a manner that ensures high query performance. To
enable support for significantly higher data rates, we propose
a technique based on on-demand view materialization and in-
dexing. In our approach, when an event occurs, the system
proactively extracts relevant historical data and indexes it in
preparation for forensic queries over that data. We show that
our approach significantly improves response times for a large
class of queries, while maintaining high insert throughput.

1 Introduction

Traditionally, a network intrusion detection system
(NIDS) monitors traffic at a network perimeter to block
known attacks and suspicious network behavior (e.g.,
port scans). However, as attackers devise new ways to
compromise and exploit end hosts (e.g., email viruses,
peer-to-peer malware), many enterprises have begun to
employ more sensors inside their network to monitor in-
ternal network activity. As such, an NIDS has evolved to
support internal network security—e.g., detecting inter-
nal worm propagation.

The main role of an NIDS is to detect and flag suspi-
cious network activity in near real time. Some alerts can
trigger an automatic response such as dropping malicious
packets or updating a network filter. Many alerts, how-
ever, go through a manual verification process in order
to sift out false alarms. This verification process typi-
cally involves checking the suspected host’s recent net-
work activity and looking up any services recently run
by that host. It may also involve forensic investigation
aimed at finding the root cause of the security breach

RouterRouterRouterNIDS

Historical
Flow

Database

Enterprise Network

Network
Flow Data

Flow Data

Security
Alerts

Forensic
Queries

Figure 1: Network intrusion detection system with a histor-
ical flow database. The NIDS receives network flow summary
data (such as NetFlow data [8]) from the enterprise’s internal
routers, processes them, and generates alerts. While doing so,
it maintains historical flow summary data for network forensic
analysis.

and identifying other affected hosts. To support the net-
work administrator, an NIDS must thus provide not only
near real time security event detection, but also conve-
nient and efficient access to historical network flow data.
Near real-time network event detection has received sig-
nificant attention in the past [9, 18, 20]. In this paper, we
address the problem of building a historical flow database
suitable for forensic analysis queries. Figure 1 shows the
structure of an NIDS with a historical log database.

Supporting a historical network flow database in con-
junction with an NIDS raises two important technical
challenges. First, because network traffic monitors gen-
erate data continuously and at high-rate, the database
needs to support a high data insertion rate. For example,
in a busy hour, a medium-size enterprise network with
several thousands of hosts may see up to 100,000 new
flows per minute internally. Second, to facilitate human-
driven forensic analysis, the database must answer his-
torical queries quickly (< seconds). Today, NIDSs try to
meet these challenges by implementing their own storage
systems; such custom solutions, however, are expensive
to build and often offer limited and sometimes awkward
APIs [13].

In contrast, relational database management systems
(RDBMSs) [12, 14, 17, 19] offer many features desirable
for conducting network forensic investigations—a pow-

1



erful query optimizer, indexes, and a flexible and stan-
dard query language (e.g., SQL). It is common belief,
however, that an “out-of-the-box” RDBMS is ill-suited
to support the high data-rate workload of an NIDS. Even
if an RDBMS can store incoming data sufficiently fast
to keep-up with input data rates (by bulk loading the
data, for example), efficient querying requires indexes
on multiple attributes, and indexes are known to signif-
icantly decrease database insert throughput [5]. Hence,
it is expected that an RDBMS would be either too slow
to keep-up with network flow data rates or it would have
unacceptably slow query execution times.

In this paper, we first demonstrate this trade-off be-
tween insert throughput and query performance for an
off-the-shelf RDBMS using a network monitoring and
forensic analysis workload (Section 2). We show that an
RDBMS has excellent insert throughput as long as it only
keeps one or two indexes on the data (23,000 flows/sec
for two indexes in our experiments), but that such a small
number of indexes yields an unacceptably slow response
time for common forensic queries (from a few minutes
to several hours).

To address this shortcoming, we develop a new tech-
nique that we call OVMI, for On-demand View Materi-
alization and Indexing (Section 3). The OVMI technique
enables an NIDS to use an off-the-shelf RDBMS as the
network flow archive, yet ensure both a high data in-
sert rate and a high forensic query performance. OVMI
exploits three properties of forensic analysis queries to
achieve this goal. First, alerts produced by the NIDS
partly determine subsequent forensic queries: i.e., ad-
ministrators query the system about the historical activ-
ity of the entities involved in the newly detected event.
Second, forensic queries are “drill-down” queries: sub-
sequent queries refine the selection predicates of earlier
queries. Finally, having a human in the loop creates a
time delay between the time when an event occurs and
the time when a first forensic query is issued. OVMI ex-
ploits this delay to prepare for upcoming queries.

With OVMI, the RDBMS does not index data contin-
uously. Instead, when an event occurs, the NIDS requests
that the RDBMS heavily index only the recent network
activity of the entities involved in the event. To ensure
fast creation of these partial indexes, the RDBMS first
copies all relevant data into a separate table and builds
indexes on that table. The existence of these materialized
views is known to the NIDS but transparent to the user.
We show that the OVMI approach works well for a large
class of forensic analysis queries, where an administrator
starts submitting queries within a short time period (min-
utes to tens of minutes) of an event and is interested in
the past few hours worth of network flow data

OVMI improves query evaluation performance by or-
ders of magnitudes while supporting high data rates (up

to 3,000 flows/s in our experiments). OVMI also helps
quickly produce partial results when a query stretches
past the materialized time window of data.

2 Storing Flow Records in an RDBMS

The data rate that an NIDS must handle depends on
several factors, including the number of hosts on the
monitored network, the applications that these hosts are
running, and hosts’ network activity levels. Roughly, we
estimate that a flow arrival rate can easily reach 100,000
flows per minute (≈ 1,700 flows/s) for a medium-large
enterprise where thousands of active hosts are generat-
ing traffic1. The flow arrival rate can be even higher for
larger organizations or if a network worm causes infected
machines to engage in network scans.

In this paper, we assume that an NIDS receives
streams of flow records from network sensors or routers,
which track each flow, updating the flow’s attributes such
as the number of packets, bytes, and TCP flags. These
sensors or routers can be configured to export a set of
flow records to an NIDS for further processing when
these flows expire. Our goal is thus to devise a histor-
ical flow database that will easily handle flow record in-
sert rates in excess of 3,000 flows/s. In this section, we
benchmark the performance of an RDBMS in handling
such data rates while maintaining various indexes in or-
der to provide good query performance.

2.1 Method

We perform all experiments on a PostgreSQL 8.1.5
database [19]. PostgreSQL is one of the most advanced
open source databases. We expect the performance of
commercial databases, however, to exceed that of Post-
greSQL.

For our experiments, we use two traces: Trace 1 is a
10-hour network trace from a medium-size Internet Ser-
vice Provider (ISP). This trace is somewhat old, collected
in April 2003, but contains flow records from two hosts
infected by a Code Red worm (out of 389 hosts), scan-
ning hundreds of thousands of IP addresses, making it
suitable for testing RDBMS performance in the presence
of security events. Trace 2 is a 22-day network trace
from a small enterprise collected in October—November
2006. Table 1 shows the main attributes associated with
the network flow data in both traces. The average flow
rates are 27 flows/s for Trace 1 and 10 flows/s for Trace
2. Since our traces are over limited periods of time, we
cycle them to simulate more extended monitoring activ-
ity. We also replay them at higher speeds to simulate
higher data rates.

1We have seen on average 50,000 new flows per minute from a net-
work with about 400 hosts in business hours.

2



Column Type Description
start ts timestamp start time of flow
protocol varchar(10) TCP, UDP, ICMP, etc.
cli ip int client IP
srv ip int server IP
cli port varchar(8) client port
srv port varchar(8) server port
app varchar(20) application
c2s p int(64) # packets from client to server
s2c p int(64) # packets from server to client

Table 1: Schema of a network flow database. We show only
attributes relevant to our discussion. All attributes can be ob-
tained from network packet headers, except app (e.g. MSEx-
change, Lotus Notes), which is available via payload inspec-
tion. Flows are generated by app.

For all benchmarks, we use a machine with two Intel
Xeon, 3 GHz processors with hyper-threading enabled,
8 GB RAM, and a 369 GB, Western Digital (SATA,
8.9ms seek, 16Mb cache, 7200 RPM) disk. We believe
that this machine is representative of what one would use
for a DBMS server.

2.2 Database Bulk Load Throughput
The database insert throughput determines the max-

imum average flow rate that the database can keep up
with. Figure 2 shows the insert throughput for increasing
numbers of indexes. In this experiment, the client bulk-
loads the data, blocking between each bulk. The figure
shows results for 500-tuple bulk sizes. Error bars show
maximum throughputs as the bulk size changes. The
indexed attributes are in order: start ts, cli ip,
srv ip, proto, srv port, cli port, and app. All
indexes are B-trees to enable range queries.

As shown in the figure, without indexes, the database
can sustain rates in excess of 45,000 flows/s. Each added
index significantly cuts the throughput. For Trace 2, even
though the throughput decreases, the database can sus-
tain all 7 indexes and still achieve our 3,000 flows/s goal.
However, this is not the case in general. For Trace 1, the
throughput falls below 3,000 flows/s after 5 indexes. Ad-
ditionally, the throughput is barely above 3,000 flows/s
as soon as the database maintains more than two indexes.
Therefore, maintaining multiple indexes is not a scalable
approach to achieving high input rates.

Figure 2 also suggests that the effect of an additional
index on throughput depends on the properties of the in-
dexed attribute. Figure 3 shows this effect in more de-
tail by presenting the maximum insert throughput for
Trace 1 with a single index but for different indexed at-
tributes. Attribute properties that affect performance in-
clude the data distribution: e.g., start ts is clustered
and monotonically increasing, while (srv ip(int)) is
unclustered and has a large number of distinct values
due to port scans by the infected hosts. Another im-
portant property is the attribute’s data type: e.g., index-

 0

 10000

 20000

 30000

 40000

 50000

 60000

76543210

In
se

rt
 th

ro
ug

hp
ut

 (
flo

w
s/

se
c)

Number of indexes

Trace 1
Trace 2

Figure 2: Effect of number of indexes on insert throughput.
Indexes significantly cut throughput for both traces.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000

2 sim
ple idx

1 m
ulti-attr idx

srv_ip(str)

srv_ip(int)

srv_ip(int)

start_ts

T
hr

ou
gh

pu
t (

flo
w

s/
se

c) Data Distribution

Data Type Index Type

Figure 3: Effect of type of indexed attribute on insert
throughput. The throughput of a database depends on the
properties of the indexed attributes. srv ip(int) represents
a hash value of the string srv ip(str) attribute.

ing integers (srv ip(int)) goes significantly faster
than indexing strings (srv ip). Figure 3 also shows
that the database can maintain almost the same through-
put whether it has a single multi-attribute index (e.g.,
(cli ip,srv ip)) or an equivalent number of single-
attribute indexes (e.g., cli ip and srv ip). Grouping
indexes into multi-attribute indexes thus provides mini-
mal performance gains.

Other properties than the ones we observed can also
affect performance. However, because the choice of in-
dexes must be based on workload and not index perfor-
mance, and because the distribution of input data cannot
be controlled, we expect the maximum possible number
of indexes to remain low in practice.

2.3 Network Forensics Queries

Suppose a host X is detected as having been scanning
hundreds of hosts on TCP port 25 at a slow rate for the
past two days. This event may lead the administrator to
issue the following queries to identify the root-cause of
this scanning behavior (e.g., email virus propagation or
unregistered email server):

(Q1) What client applications has X been running and
how much traffic was generated for each application?
SELECT count(*) FROM Flows
WHERE start_ts >= ’now - T’ AND cli_ip = X
GROUP BY app

Q1 is one example of forensic analysis query. In gen-
eral, administrators need to issue several such queries,

3



using different attributes in their search. For example,
to investigate the same alarm, the administrator may fur-
ther need to see what applications X has been running as
a server instead of as a client (i.e., WHERE srv ip = X)
(Q2) or both as client and server (i.e., WHERE cli ip =

X OR srv ip = X) (Q3).
After running some initial queries, the administrator

often needs to execute additional queries to “drill-down”
on the problem. Let us assume that the administrator
executed query Q3, which returned the following result:

WEB 52563
MSExchange 2231
NETBIOS139 476
..

Given the NETBIOS and MSExchange traffic, the re-
sult suggests that the host in question is running a Mi-
crosoft Windows operating system. The administrator
is now suspicious of a possible infection by a MyDoom
email virus. To verify her suspicion, she checks whether
X has received any traffic on port 1034 which is known
to be a backdoor used by MyDoom.

(Q4). Has X received any traffic on port 1034?
SELECT s2c_p, c2c_p FROM Flows
WHERE start_ts >= ’now - T’ AND

srv_ip = X AND srv_port = 1034

The administrator may also submit more sophisticated
SQL queries. An example is to look for backdoor in-
trusions: the administrator wants all pairs of malicious
”triggers”, in which a first attack flow causes the victim
to initiate a new flow back to the attacker to register the
success of the exploit (Q5).
SELECT * FROM Flows a, Flows b
WHERE a.srv_ip = b.cli_ip AND

a.cli_ip = b.srv_ip AND
a.srv_port = 1034 AND
a.start_ts < b.start_ts AND
b.start_ts - a.start_ts < 600 -- seconds

To support a variety of such queries effectively, an
RDBMS needs to maintain a variety of indexes on the
different attributes that appear in query predicates. With
only one or two indexes, a large fraction of queries will
require scanning all historical data within the window T ,
yielding an unacceptably poor performance. For exam-
ple, for an average flow rate of 3,000 flows/s and with
only an index on start ts, Q2 takes about 19s for
T = 1 h, about 6 min for T = 6 h, about 57 min for
T = 1 day, and as much as 5.1 h for T = 2 days. With
an additional index on srv ip, the same queries take un-
der one second.

Fortunately, forensic queries have several properties
that we can leverage to support them efficiently:

1. Forensic queries are highly predictable. By defi-
nition, these queries request historical information
about the recent network activity of entities in-
volved in alerts. Alert attributes (e.g., alert time,
IP address of the machine generating the abnormal

network activity) thus determine the bulk of upcom-
ing forensic queries.

2. Forensic queries look at a tiny fraction of all the net-
work flow data. In our traces, we find that even the
busiest server is responsible for less than 3% of all
flows.

3. Forensic analysis is usually composed of one or
more drill-down queries—subsequent queries refine
the selection predicates of earlier queries, request-
ing a subset of previously selected tuples.

4. There is typically a time lag between the time an
alert occurs and the time an administrator investi-
gates it.

In what follows, we propose a scheme that exploits
these properties to efficiently support network forensics
queries in an off-the-shelf relational database.

3 On-Demand View Materialization and
Indexing (OVMI)

To support network forensics queries, we propose
to maintain only a full index on start ts and cre-
ate additional indexes over the historical flow log on-
demand (i.e., when an event occurs) and partially (i.e.,
only index data that is relevant to the alert). Since our
scheme (OVMI) does not rely on multiple full indexes,
the database can sustain a high average insert rate of net-
work flow data. At the same time, because OVMI still in-
dexes the relevant data, it provides fast query execution.
Given that forensic queries are predictable (Section 2.3),
a simple rule-based deterministic algorithm can be used
to select the predicates and indexes for each newly de-
tected event.

3.1 Partial Materialization and Indexing

PostgreSQL already supports partial indexes [19],
where an index is built only over tuples that match a
particular predicate. However, when building a partial
index, PostgreSQL does not utilize existing indexes that
match the predicate but instead scans the entire under-
lying relation. This approach is untenable in our setting
because the historical log is large and grows with time.

Instead, we propose to use a materialized view. When
an alert occurs, OVMI reacts by copying into a tempo-
rary table all network flow data that falls within some
predefined time window (T) and matches a predicate de-
termined by the alert. In doing so, OVMI utilizes the
index on start ts and avoids scanning the whole rela-
tion. The following example shows a materialized view
created upon scan event 1.
SELECT * INTO scan_event_1 FROM Flows
WHERE start_ts >= ’now - T’ AND

start_ts <= now AND
(cli_ip = X OR srv_ip = X)

4



Window Size
1 hour 6 hours 1 day 2 days

Scan Window 19 s 6.2 min 56 min 5 h
Materialize 5% 24 s 6.5 min 58.4 min 5.3 h

Table 2: Scanning and materializing various time windows.
View materialization is largely dominated by the time it takes
to scan the window. We assume a flow rate of 3,000 flows/s and
materialize 5% of the window.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1-3idx 2 idx 3 idx 1-3idx 2 idx 3 idx 1-3idx 2 idx 3 idx

T
im

e 
(m

in
)

6 hours 1 day

2 days

Sequential Concurrent Sequential Concurrent Sequential Concurrent

cli_ip & srv_port & cli_port
cli_ip & srv_port

cli_ip
srv_port
cli_port

Figure 4: Time to index the materialized view. We are show-
ing the time to create one through three indexes concurrently
and compare it with the time to create them sequentially. Con-
current indexing is significantly faster than sequential indexing
and it is little compared to view materialization.

As mentioned in Section 2.3, typical forensic queries
only look at a small percentage of the tuples in the time
window (T). Table 2 shows the time it takes to scan a
window T and to materialize 5% of the tuples in T, as-
suming a flow rate of 3,000 flows/s.2 We see that the
view materialization time is largely dominated by the
time it takes to scan the window. For example, materi-
alizing 5% of a 1-day window incurs only about 4.2%
penalty over scanning the window.

5% of a large time window can still represents a sig-
nificant amount of data if the flow rate is high. For ex-
ample, six hours of flow data at 3,000 flows/s represents
65 million tuples. While our simple queries from Sec-
tion 2.3 take on the order of seconds to complete even on
the 5% view of a 2-day window (e.g., query Q1 takes
about 80 sec), in the absence of indexes, more com-
plex queries can take significantly longer because the
database can only access the data by scanning it.

To achieve high query performance, indexes must be
built on the materialized view. Figure 4 shows the time
to build between one and three indexes simultaneously
on the materialized view. For 5% of one day, even three
simultaneous indexes take only about 10 min to build.
Index creation drops to 1 min for a 6-hour window. In-
dexing the materialized view thus adds a small overhead
compared with materializing the view in the first place.

2The results shown are for Trace 2. We found almost identical re-
sults when using Trace 1.

Overall then, the bulk of the cost to materialize and in-
dex the data in preparation for forensic analysis queries
is dominated by the time to scan the historical window
of data. The time varies greatly depending on the size
of this window. Therefore, OVMI can serve to prepare
a shorter or longer window of historical data, depending
on flow rates and the expected delay between the time an
alert occurs and the time the administrator starts his in-
vestigation. With 3,000 flows/s and for a typical scenario
where the time lag is on the order of minutes or tens of
minutes, the OVMI approach enables the system to easily
pre-process over 6 hours worth of data. Additionally, as
we discuss in the following subsection, OVMI also ben-
efits queries with a window of interest larger than that of
the materialized view.

One limitation of this approach is that potentially im-
portant network traffic that follows the initial alert is not
included in the view. To address this limitation, we can
extend the above approach as follows. When the NIDS
triggers the alert, the system materializes and indexes a
given window of data. It then continues to insert new
data into the materialized view until the administrator
indicates that the alert is no longer interesting. While
updating the materialized view, the database throughput
would decrease. The decrease, however, would be tem-
porary. Once the threat is handled, the materialized view
would no longer need to be updated, and the database
throughput would go back to its pre-alert value.

3.2 Partitioned Query Execution
In some scenarios, forensic queries may request more

information than is available in the materialized view.
For these scenarios, OVMI is still helpful, because the
materialized view that it prepares can help answer a sub-
set of the query faster. There exists a vast literature on
exploiting materialized views to improve query execu-
tion performance [10, 11]. In our approach, although we
support arbitrary queries over the materialized view and
the raw archive, we currently only split selection queries
on their time predicates, which is enough to demonstrate
the benefit of OVMI.

More specifically, given a query that overlaps a ma-
terialized view, we split it into two subqueries based on
time: one subquery runs on the view exploiting its in-
dexes, and the other one accesses the data via a scan of
the remaining time window in the Flows relation. For
example, given the sample materialized view from Sec-
tion 3 over the last T = 6 h and query Q4 over T = 7 h,
the query is split into the following subqueries:
(Q4.1) SELECT s2c_p, c2c_p FROM scan_event_1

WHERE srv_ip = X AND srv_port = 1034
(Q4.2) SELECT s2c_p, c2c_p FROM Flows

WHERE srv_ip = X AND srv_port = 1034
AND start_ts >= ’now - 7’
AND start_ts < ’now - 6’

5



Hrs. Inside Time
Mat. View + Results from Mat. View Unsplit
Hrs. Outside + Results from Flows Query

5h + 1h 0.02 s + 21 s 6.3 min
1h + 5h 0.02 s + 4.8 min 6.3 min

Table 3: Performance of split queries. We show the exe-
cution time for both subqueries of the split query, for differ-
ent window sizes covered by or outside the materialized view.
Splitting queries improves query performance and allows the
user to get the first results fast.

Table 3 shows the performance of partitioned Q4
queries if a materialized view indexed on srv port ex-
ists. We vary the overlap of the query’s time interval and
the view’s window. In addition to the virtually zero de-
lay in retrieving the first results from the indexed materi-
alized view, splitting the query also improves its overall
performance: the larger the window covered by the ma-
terialized view the greater the gain. For example, about
94% gain is achieved in the favorable case of having 5
hours covered by the view and only 1 hour lying outside.
In summary, OVMI greatly improves performance not
only for queries that match the materialized window of
data, but also for queries that span a larger time interval.

However, there are cases when splitting queries
might penalize the total execution time. For example,
if we only materialize flows with cli ip = X within
a certain time window, splitting the query SELECT *
FROM Flows WHERE start ts > T AND (cli ip

= X OR cli ip = Y) will yield worse performance
than executing the query only on the Flows relation. For
this reason, we currently do not perform query splitting
for this kind of queries, although they still improve
user-perceived latency by returning the first results fast.

4 Related Work

Traditional NIDS systems detect intrusions, known
attacks, and suspicious network activity [18, 20]. In
this paper, we focus on a newer class of NIDS sys-
tems that provide both intrusion detection functional-
ity and network forensic analysis by keeping historical
flow logs [1, 2]. Existing NIDS solutions use custom
databases whose performance results are not publicly
available. We show that it is possible to use an open
source relational database to store network flow infor-
mation and propose an on-demand materialization and
indexing technique that effectively speeds-up forensic
queries, while maintaining a high insert throughput.

The increased popularity of monitoring applications,
including network monitoring and network intrusion de-
tection, has lead the database community to develop a
new class of general-purpose data management systems,
called stream processing engines (SPEs)3. Examples of

3These engines are also called data stream management sys-

SPEs include: Aurora [3], Borealis [4] Gigascope [9],
STREAM [15], and TelegraphCQ [6]. These SPEs pro-
cess flow data directly as it arrives without storing it. As
such, they provide high performance continuous process-
ing, but do not support forensic analysis queries. Our
approach is thus complementary to these efforts.

The Seaweed [16] peer-to-peer data management sys-
tem can serve as a historical flow database. Seaweed’s
focus, however, is on the availability and scalability chal-
lenges of accessing highly distributed data sets. It pro-
vides no mechanism for speeding-up historical queries
at each site, which is the focus of our approach.

Answering queries using materialized views [10, 11]
and caching query results [23] are known techniques to
speed-up query execution. Our contribution lies in apply-
ing these techniques to the domain of network forensic
analysis and proposing a new scheme that materializes
relevant network flow data on-demand, when an event
occurs, to speed-up upcoming queries.

Partial indexes, which enable a database to index only
tuples matching a predicate, have been investigated in
the past [21, 22, 24]. Our approach can be thought of as
building partial indexes on-demand. However, instead of
using the native partial index mechanism, we material-
ize data matching the predicate to avoid the overhead of
scanning the entire relation while building the index.

FELIX [5] is an approach for temporarily suspending
indexing archived stream data during overload. In con-
trast, in our application domain, the database is unable to
maintain full indexes under normal load conditions.

Handling large amounts of historical data is not a new
problem in databases. However, most research in this
area has focused on warehousing scenarios, where data is
archived, indexed and queried offline, with plenty of time
to optimize reads for data warehousing applications [7].

5 Conclusion

Forensic analysis is a critical task in network moni-
toring applications. In this paper, we proposed OVMI,
an On-demand View Materialization and Indexing tech-
nique, that enables an NIDS to use an off-the-shelf
RDBMS for its historical log. With OVMI, the system
can sustain high network flow rates, while achieving high
performance for forensic analysis queries. We showed
that with a data rate of 3,000 flows/s, OVMI can pre-
pare the system within minutes to handle forensic analy-
sis queries over several hours of data preceding the alert.
We view OVMI as an important step in the direction of
using RDBMSs instead of custom solutions in network
monitoring applications.

tems (DSMS) [3, 15] continuous query processors [6], and stream
databases [9]

6



One limitation of OVMI is that it improves perfor-
mance for forensic analysis queries over only the most
recent several hours worth of historical data. While this
amount of data is frequently sufficient, administrators
sometimes need to access even older data. In future
work, we plan to investigate additional techniques to fur-
ther improve RDBMS support for applications within the
network monitoring domain, including efficiently query-
ing larger volumes of historical data. We also plan to
investigate archiving and efficiently querying data other
than just flow data.

References
[1] Mazu networks. http://www.mazunetworks.com/,

2007.
[2] Netscout. http://www.netscout.com/, 2007.
[3] Abadi et. al. Aurora: A new model and architecture for data

stream management. VLDB Journal, 12(2), Sept. 2003.
[4] Abadi et. al. The design of the Borealis stream processing engine.

In Proc. of the CIDR Conf., Jan. 2005.
[5] S. Chandrasekaran. Query processing over live and archived data

streams. Ph.D. Thesis, Univ. of California Berkley, 2005.
[6] Chandrasekaran et al. TelegraphCQ: Continuous dataflow pro-

cessing for an uncertain world. In Proc. of the CIDR Conf., Jan.
2003.

[7] S. Chaudhuri and U. Dayal. Overview of data warehousing and
OLAP technology. SIGMOD Rec., 26(1), 1997.

[8] Cisco Systems. Cisco IOS NetFlow. http://www.cisco.
com/go/netflow, 2007.

[9] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gi-
gascope: A stream database for network applications. In Proc. of
the 2003 SIGMOD Conf., June 2003.

[10] J. Goldstein and P.-A. Larson. Optimizing queries using materi-
alized views: a practical, scalable solution. In Proc. of the 2001
SIGMOD Conf., 2001.

[11] A. Y. Halevy. Answering queries using views: A survey. The
VLDB Journal, 10(4), 2001.

[12] IBM. DB2. http://www.ibm.com/db2, 2006.
[13] D. N. Joel Snyder and R. Thayer. http://www.

networkworld.com/reviews/2003/1013idsrev.
html?page=3, 2003.

[14] Microsoft. SQL Server. http://www.microsoft.com/
sql/, 2006.

[15] Motwani et. al. Query processing, approximation, and resource
management in a data stream management system. In Proc. of
the CIDR Conf., Jan. 2003.

[16] D. Narayanan, A. Donnelly, R. Mortier, and A. Rowstron. Delay
aware querying with Seaweed. In Proc. of the 32nd VLDB Conf.,
Sept. 2006.

[17] Oracle. http://www.oracle.com/, 2006.
[18] V. Paxson. Bro: a System for Detecting Network Intruders

in Real-Time. Computer Networks (Amsterdam, Netherlands:
1999), 31(23–24):2435–2463, 1999.

[19] PostgreSQL. http://www.postgresql.org/, 2006.
[20] M. Roesch. Snort - lightweight intrusion detection for networks.

In Proc. of the 13th Large Installation System Administration
Conference, pages 229–238, 1999.

[21] C. Sartori and M. R. Scalas. Partial indexing for nonuniform
data distributions in relational DBMS’s. IEEE Transactions on
Knowledge and Data Engineering, 6(3):420–429, 1994.

[22] P. Seshadri and A. N. Swami. Generalized partial indexes. In
Proc. of the 11th ICDE Conf., 1995.

[23] J. Shim, P. Scheuermann, and R. Vingralek. Dynamic caching of
query results for decision support systems. In SSDBM ’99, 1999.

[24] M. Stonebraker. The case for partial indexes. Technical Report
UCB/ERL M89/17, EECS Department, University of California,
Berkeley, 1989.

7


