
Experiences with Formal Specification of Fault-Tolerant File Systems

Roxana Geambasu
University of Washington

roxana@cs.washington.edu

Andrew Birrell
Microsoft Research

birrell@microsoft.com

John MacCormick
Dickinson College

jmac@dickinson.edu

Abstract

Fault-tolerant, replicated file systems are a crucial
component of today’s data centers. Despite their huge com-
plexity, these systems are typically specified only in brief
prose, which makes them difficult to reason about or ver-
ify. This paper describes the authors’ experience using for-
mal methods to improve our understanding of and confi-
dence in the behavior of replicated file systems. We wrote
formal specifications for three real-world fault-tolerant file
systems and used them to: (1) expose design similarities
and differences; (2) clarify and mechanically verify consis-
tency properties; and (3) evaluate design alternatives. Our
experience showed that formal specifications for these sys-
tems were easy to produce, useful for a deep understanding
of system functions, and valuable for system comparison.

1. Introduction

Fault-tolerant, replicated file systems have become a
crucial component of today’s dependable enterprise data
centers. For example, the Google File System (GFS) [9],
Niobe [16], and Dynamo [7] underlie many of the web ser-
vices offered by Google, Microsoft, and Amazon.com, re-
spectively. Many other fault-tolerant file systems have been
developed in academic settings, as well (e.g., [15, 19]). All
of these systems are extremely complex, including sophisti-
cated asynchronous protocols, e.g., for replica consistency,
recovery, and reconfiguration.

Despite their complexity, fault-tolerant file systems
have typically been described only in a few pages of prose,
which can be incomplete, inaccurate, or ambiguous. This
makes reasoning about and proving system properties hard
and error-prone. In contrast to prose, formal specifications
in a language such as TLA+ [13] are unambiguous and pro-
vide solid grounds for model checking and formally proving
system properties. The advantages of formal specifications
have been previously reported for various types of systems,
e.g.: caches [11], space shuttle software [6], and local and
distributed file systems [18, 20].

We wished to explore how formal specifications and
methods can help in understanding, comparing, and prov-

ing properties of another important class of systems: fault-
tolerant, replicated file systems. To do this, we wrote formal
specifications for three real-world, successful fault-tolerant
file systems – GFS, Niobe, and Chain [19] – and used those
to analyze, compare, and prove properties of the systems.
This paper presents our experience writing and using those
formal specifications. Overall, we found that formal speci-
fications improve understanding of system functioning, en-
able better comparison, and are reasonably easy to produce.

We found specifications particularly useful for three
purposes. First, specifications crystallize differences and
similarities of the systems’ mechanisms. For instance, we
find that GFS and Niobe have substantial overlap in mecha-
nisms; our specification isolates common mechanisms and
provides a clear view of what is similar and different. Sec-
ond, specifications enable understanding and mechanical
verification of the systems’ consistency semantics. To rea-
son about a system’s consistency, we reduce the system to a
much simplified analog (called a SimpleStore), and use re-
finement mappings [1] to verify that the system implements
its SimpleStore. We then reason about and compare con-
sistency properties of SimpleStores. Third, specifications
enable comfortable experimentation with alternative system
designs, which can be a valuable tool for a designer.

Our approach is pragmatic. While our specifications,
in principle, enable full formal proofs [11], we rely on
model checking of limited instances of the systems to con-
firm properties comfortably. By revealing various ways in
which specifications are valuable in fault-tolerant file sys-
tem analysis and comparison, we hope to convince system
builders of the utility of specifying their own systems.

After providing some background (Section 2), we
demonstrate the three usages of specifications (Sec-
tions 3, 4, and 5). We then review previous work (Section 6)
and share some lessons from our experience (Section 7).

2. Background
2.1. Overview of the Studied Systems

In the three studied systems, each data object is stored
at a group of replicas (groups can overlap), and the group
is managed by a single master. The systems are reconfig-

1

urable, allowing failed or disconnected replicas to be re-
moved from the group and new replicas to be added.

GFS. GFS provides a file-level write/append/read in-
terface to clients. Files stored in GFS are partitioned into
fixed-size chunks, each of which is replicated by a group.
The master assigns a unique primary to each group. To per-
form a chunk write or append, the client sends the data to
all replicas and then submits a write request to the primary,
who acknowledges the write if all replicas have succeeded.
To read from a chunk, the client goes to any of the chunk’s
replicas. Although in the published paper the master was
not guaranteed to be reliable, we will assume it is here, to
enable comparison to Paxos-based Niobe and Chain.

Niobe. Niobe offers an object-level read/write inter-
face, where the object is the replication unit. Similarly to
GFS, a unique primary exists for each group. To perform
a write, the client submits the data to the primary, which
writes it to disk and forwards it to the secondaries. The sec-
ondaries perform the write and acknowledge it to the pri-
mary. If any secondary fails to ACK the write in a timely
manner, the primary proposes to the master that the failed
replica(s) be removed from the group. After all replicas
have ACKed the write (or have been removed), the primary
responds to the client with success if the write succeeded at
a configurable number of replicas, or with error otherwise.
To read an object, the client goes to the primary.

Chain. Chain imposes a structure on the replica group:
replicas are arranged in a chain. Writes are sent to the head
of the chain and travel along the chain toward the tail, where
they get acknowledged. Reads are sent to the tail, which re-
turns its local value. While GFS and Niobe support network
partitions, the original Chain paper implicitly assumes no
network partitions. For example, it does not specify how to
prevent a client from reading from a stale, but still alive tail.
We assume in this work no network partitions for Chain.

2.2. TLA+ and Refinement Mappings

TLA+ is a formalism based on temporal logic, espe-
cially suited for specifying asynchronous distributed sys-
tems [13]. To specify a system, one describes its allowed
behaviors using a state-machine approach. One specifies
the variables that compose the system’s state, a set of ini-
tial states, and the transitions leading from one state to an-
other. A TLA+ specification can be enhanced with proper-
ties, which can be model-checked using the Temporal Logic
Checker (TLC [14]). Because TLC exhaustively checks a
system’s state space, which is typically exponential in sys-
tem size, it can be used only on small instances of a system.

A refinement mapping [1] is a technique used to re-
duce one specification to another. Using refinement map-
pings, we reduce our specification of each system to a sim-
ple model of the system (called a SimpleStore). Figure 1
illustrates a refinement mapping: it maps a system’s state

System model

SimpleStore
S'1

S'2T'

S1 S2
T

Refinement mapping

Figure 1. Refinement mapping from a system to its
SimpleStore. Clouds represent state spaces. The refine-
ment mapping maps the system’s states onto states in Sim-
pleStore. System states S1 and S2 map onto states S′

1 and
S′

2, respectively (S′
1 and S′

2 may be the same state). The
mapping is valid if for any S1 and S2, for any system tran-
sition T from S1 to S2, there exists a SimpleStore transition
T ′ leading from S′

1 to S′
2 (possibly the identity transition).

space onto the SimpleStore’s state space. A system imple-
ments its SimpleStore if all the system’s client-visible be-
haviors can be mapped onto valid SimpleStore behaviors.

We do not attempt to prove implementations. Instead,
we specify the mappings as TLA+ properties, and model-
check them for limited instances of the systems (three repli-
cas). Of course, to prove implementation for any instance,
one can perform full proofs. Such proofs, although in prin-
ciple enabled by our specifications [11], are out of scope
here. Still, our model checking covers the typical setting in
industry systems like GFS, which do three-way replication.

Having verified that a system implements its Simple-
Store, proving history-based consistency properties about
the system (e.g., linearizability) is known to be reducible to
proving them for its SimpleStore [11], which is significantly
easier than reasoning about the whole system.

3. Comparing System Mechanisms

We produced TLA+ specifications for all three of the
systems. For GFS and Chain, specifications are based on
published papers describing the systems and (email) con-
versations with the systems’ designers; for Niobe, one of
the designers participated in this work and is a co-author of
this paper. Table 1 provides the sizes of our specifications
and the time to write them. For each system, we specified
at least how reads, writes, and replica removal are done.
For Chain, we also specified the recovery mechanism. Due
to the expressiveness of a formalism such as TLA+, spec-
ifications distill core replication mechanisms and protocols
from the systems’ complexity. As a result, our specifica-
tions are small (500 TLA+ lines, or about 10 pages), yet pre-
cise, high-level models of the systems. Overall, we found
specifications to be extremely helpful for an in-depth under-
standing of systems, as well as reasonably easy to produce.

Specifications also prove valuable for a crisp compar-
ison of the mechanisms in different systems. While a de-
tailed examination of the specifications would show how the
key differences and similarities stand out clearly in TLA+,

2

Chain Niobe GFS
TLA+ Lines 410 480 705

Time to write 3 weeks 2 weeks 2 weeks

Table 1. The three TLA+ specifications. For each sys-
tem, we show the TLA+ specification size, and the time to
produce the first working version by one person, without
prior TLA+ knowledge. The Chain specification was the
first to be written, and took longer due to lack of experience
with TLA+. The GFS specification is significantly longer,
as we specify writes and appends separately.

NiobeGFS

Figure 2. Design differences in TLA+. The figure shows
TLA+ snippets from the Niobe and GFS modules. The pur-
pose of this figure is not TLA+ instruction, but rather to
help the reader visualize how design differences (shown in
a box) stand out clearly in TLA+.

we choose to provide only an example here and make spec-
ifications available online [8].

From reading the original papers, GFS and Niobe seem
very different systems, designed and optimized for quite
different client semantics and workloads. However, as we
were creating their specifications, it became clear to us
that the systems had in fact a lot of mechanisms in com-
mon. Fundamentally, they both rely on a single master
and a primary-secondary replication scheme. Consequently,
we abstracted this structure into a common TLA+ module,
which we extended in the Niobe and GFS specifications.
This factorization turned out to be a powerful effect: the
common module has 291 TLA+ lines, the modules specific
to GFS-writes and Niobe are 189 lines and 287 lines, re-
spectively, and the initial, unsplit Niobe specification was
about the same size as the factorized one. In other words,
the two systems’ specifications have over half their TLA+
lines in common.

After factorization, the core differences between the
two systems stood out clearly in TLA+. For example, our
specifications make clear the distinction between write fi-
nalization in GFS and Niobe. Figure 2 illustrates this dis-
tinction in a side-by-side comparison of a part of the func-
tion specifying when writes are finalized. In GFS (left side),
the primary finalizes a write after the write request to each
of the replicas has either been acknowledged or has timed
out. In Niobe (right side), the primary finalizes a write only
after each replica has either acknowledged the write, or it
has timed out and has been successfully removed from the
group. This last condition represents the distinction and is
signaled by a box in the figure.

By abstracting out the key aspects that differentiate
real systems, specifications also help us understand the

Chain_SS Niobe_SS GFS_SS

Chain BlueNiobe

refinement
mappings

refinement
mapping

relax relax

Chain

(1) (2) (3)

GFS

Figure 3. SimpleStore and refinement mapping for
each system. We first construct and verify Chain’s Sim-
pleStore (Chain SS), then relax Chain SS to construct
Niobe SS, and further relax Niobe SS to arrive at GFS SS.

trade-offs that each system bargains for. As one exam-
ple, from the above design distinction, we learn that while
GFS can achieve better write latency, Niobe never leaves
the replica set in an inconsistent state, even after a failed
write. As another example, by allowing the client to read
from any replica, GFS achieves better read performance for
workloads with simultaneous clients reading the same data.

4. Understanding and Comparing Consistency

Currently, designers of fault-tolerant file systems typ-
ically rely only on reasoning to understand their systems’
consistency. Reasoning about a full system can be compli-
cated, faulty, lengthy, and inefficient (especially if the de-
sign is not yet finalized). In this section, we provide our ex-
perience with applying formal methods to understand and
compare consistency properties of fault-tolerant file sys-
tems.

Our technique combines TLA+ specifications, refine-
ment mappings, and model checking. In a nutshell, we re-
duce the systems to simplified, client-centric models (Sim-
pleStores) and analyze and compare the consistency of
those models instead. A system’s SimpleStore captures all
client-visible behavior, but abstracts out many lower-level
details, hence making proofs of consistency properties easy.
We specify SimpleStores formally in TLA+, produce refine-
ment mappings from each system to the appropriate Sim-
pleStore, and use model checking to validate the reduction.
Then, by proving consistency properties about a system’s
SimpleStore, we infer that the system has those properties.

To enable comparison, we start by building a Simple-
Store for the most strongly consistent system and then relax
it to match the behavior of weaker systems. Figure 3 shows
the order in which we reduce systems to their SimpleStores.

4.1. The Chain SimpleStore

Figure 4(a) shows the structure of the Chain Simple-
Store (Chain SS). It has two components: a reliable serial
database (SerialDB) and two unreliable incoming channels
(pending rdreq, pending wrreq). Clients push their read
and write requests into pending rdreq and pending wrreq,
respectively. SerialDB takes requests one by one from the
channels, handles them, and responds to the client immedi-

3

pending_wrreq

drop(w7)

ResponsesClient Requests

commit(w5)

SerialDB

writes reads reads writes

read()

pending_rdreq

Chain_SS

r2

r1

r3

w7

w6

w5

(a) Chain SimpleStore

pending_wrreq

drop(w7)

ResponsesClient Requests

commit(w6)

SerialDB
3w drop()

Responses

writeswrites reads reads writes

pending_wrresp

4w

3w 1w 2w

read()

Niobe_SS

w5w6w7

re
sp

on
d(

w
2)

r2

r1

r3

(b) Niobe SimpleStore

Atomic actions

Figure 4. Structure of Chain (a) and Niobe (b) SimpleStores. Sections 4.1 and 4.2 provide detailed descriptions.

Chain SS Mapping from Chain state
variable to Chain SS variable
pending rdreq Read requests at the tail
pending wrreq Union of all requests in the input channel

of each live replica
SerialDB disk Value of last write committed by tail

Table 2. Refinement mapping from Chain to Chain SS
(intuition). We show how to compute each variable in
Chain SS from the state in Chain.

ately. All SerialDB actions are atomic and persistent. Chan-
nels are unreliable: they can reorder or drop requests. If a
channel drops a request, the request is never handled by Se-
rialDB and hence is never responded to. To handle a read
request (the read() action), SerialDB responds to the client
with the current value of its disk. To handle a write request
(the commit() action), SerialDB saves the write’s value to
its disk and sends a response to the client.

We produced a refinement mapping from Chain to
Chain SS (Table 2). We model-checked the refinement
mapping using TLC, for a limited instance of the Chain sys-
tem: three replicas, one object, and two data values. The
check took two days and finished successfully, providing
high confidence that indeed Chain implements Chain SS.

Using Chain SS, we can infer client-centric consis-
tency properties of Chain, namely linearizability. Thanks to
its simplicity, Chain SS can be proved linearizable in about
half a page [8]. Hence, Chain must also be linearizable.

Using formal methods, we were thus able to verify
that Chain is linearizable for the common three-replica case.
This is a powerful effect: using comfortable (and error-free)
model checking of a simple model, we fortified the tradi-
tional error-prone reasoning about a full asynchronous pro-
tocol. Our method thus increases our trust in the system’s
behavior in the face of failures.

4.2. The Niobe SimpleStore

Intuitively, Niobe seemed to map well onto Chain SS,
so we attempted to model check a mapping between Niobe
and Chain SS. However, TLC revealed an example of
Niobe behavior which is not mappable onto any Chain SS
behavior. The behavior, which requires 10 message ex-

changes, captures the case when an old primary’s write
succeeds and is responded to the client after a write of a
newer primary. This behavior leads to a still linearizable
history, however, it cannot be captured by Chain SS. What
we need is support for out-of-commit-order response deliv-
ery to clients.

Hence, we extended Chain SS in Niobe SS to add
support for this behavior (Figure 4(b)). Two modifica-
tions are needed. First, in Niobe SS, the input chan-
nel pending wrreq is ordered and writes are committed in
channel order. Second, to tolerate out-of-commit-order re-
sponse delivery, SerialDB places responses to writes into
a pending response channel (pending wrresp). This chan-
nel can later drop a response or deliver it. Now, when Se-
rialDB commits a write w, it moves all preceding writes
in pending wrreq to the pending wrresp channel, commits
w’s value to disk, and ACKs w to the client. Later on,
some of the moved writes might succeed (respond()), others
might fail (drop()).

As with Chain, we model-checked a refinement map-
ping from Niobe to Niobe SS for the same 3-replica system
instance. The check finished successfully in 3 days, pro-
viding high confidence that Niobe implements Niobe SS.
Niobe SS remains linearizable. The proof is slightly more
involved than for Chain SS, but certainly manageable [8]
and significantly easier than for a full system.

4.3. The GFS SimpleStore

Even if we assume master reliability, GFS cannot be
mapped onto either Chain or Niobe SimpleStores. We iden-
tified three counter-examples:

Ex. 1 Non-atomic writes. A GFS write can be split into
multiple writes that go to different sets of replicas, and
are thus serialized by different primaries.

Ex. 2 Stale reads. In GFS, a client can read from a stale
replica, i.e., one that is no longer part of the group and
has missed some updates.

Ex. 3 Read uncommitted. Reads in GFS can go to any
replica, so a client can read the value of an in-progress
write. This can lead to non-sequentially consistent be-
haviors, like the one shown in Figure 5.

4

1
1. w(1)

3. Ack w(1)

R1
C1 C2

R2

0
R3

2. w(1)

2. w(1)

4. r

5. r(1)

6. r

7. r(0)8. Ack w(1)

9. w(1)

1

Figure 5. Counter-example for sequential consistency
for GFS. R1 is the primary. The partially ordered sequence
of messages (order numbers are shown) leads to a non-
sequentially consistent history: < w(1), r, r̄(1), r, r̄(0),
w̄(1) > (barred operations represent responses).

The above examples are also counter-examples to se-
quential consistency and linearizability. However, the result
that GFS is not linearizable is not surprising, nor does it en-
able comparison to Chain and Niobe’s consistency models.
What is more interesting is that by eliminating the first two
counter-examples, we were able to map GFS onto a simple
extension of Niobe SS, with a well-understood consistency
model. Hence, we make two assumptions:
A1 Writes and reads never cross chunk boundaries, and
A2 Reads never go to stale replicas.

Using the same technique as before, we reduced a GFS
specification incorporating these assumptions to GFS SS,
which extends Niobe SS as follows. A read() in GFS SS
returns either (1) the value of SerialDB, (2) a value from
pending wrreq or pending wrresp, or (3) a dropped write.

GFS SS offers standard regular register seman-
tics [12], which are weaker than linearizability, but stronger
than safe semantics. The proof is again very simple [8].
Thus, using formal methods, we were able to identify two
assumptions that upgrade GFS’ consistency guarantees to
well-understood regular register semantics. This finding
casts light on GFS’ consistency model, which we found
hard to grasp from the original paper.

5. Inspecting Alternative Designs

In the previous sections, we showed that formal meth-
ods can aid in understanding and comparing mechanisms
and consistency properties of fault-tolerant file systems.
Our experience indicates that formal methods can be a valu-
able tool during the design phase of a system, as well. They
can be used by a designer to evaluate alternative designs
comfortably. To inspect the effects of an alternative design
on consistency, a system builder only modifies the spec-
ification and re-checks the refinement mapping, to verify
whether the system still implements its SimpleStore.

Using our framework (consisting of TLA+ specifica-
tions, SimpleStores, and refinement mappings), we experi-
mented with a simple design alternative for Niobe. As we
have seen, one distinction between Niobe and GFS designs
is that the former directs all reads and writes to the same
primary, while the latter allows all replicas to answer a read
request. GFS’ read-any decision has an important impact
on performance, since it increases GFS read throughput by
distributing bandwidth across distinct replicas.

As a specific question of alternative design, what
would happen to Niobe’s consistency semantics if it were
to employ the same read-any policy as GFS? Without extra
mechanism, Niobe would no longer be linearizable, since it
admits behaviors like the one shown for GFS in Figure 5.
However, we were able to model-check a mapping from
Niobe with read-any to GFS SS, which shows that it must
offer regular register semantics.

An interesting follow-up question is whether read-any
Niobe can give up or simplify some of its mechanisms
(e.g., reconciliation at primary take-over) without losing the
regular-register status. This question is a good example of
a new question space whose exploration is enabled by our
framework and an interesting point of future work.

6. Related Work

Formal modeling and methods have long been used to
reason about software [3, 4] and hardware [11, 17]. We
leverage these techniques and apply them to several fault-
tolerant file systems. While formal methods have been
widely used in hardware designs [11], builders of fault-
tolerant file systems have still not adopted modeling and
verification as a general practice. By sharing our experi-
ence, we hope to convince those builders of the utility and
practicality of formally specifying their systems.

Our work is by no means the first with this goal. Many
previous works report on the benefits of applying formal
methods to various classes of systems, e.g.: caches [11],
space shuttle software [6], on-line transaction processing
systems [10], local and distributed file systems [18, 20, 21],
and many others (a wealth of examples are presented in a
survey [5]). Our work shows how and why to apply several
formal methods to another important application domain:
enterprise fault-tolerant, replicated file systems. From this
body of previous works, the closest to ours are those pre-
senting formal modeling case studies for local or distributed
file systems (e.g., Coda, AFS) [18, 20, 21]. Fault-tolerant
file systems differ from these systems in that they include
new types of complex mechanisms, e.g., automatic recon-
figuration and recovery. We believe that our study geared
toward fault-tolerant file systems is likely to have impact in
this specific domain in ways that previous studies may not.

Some works [2, 18] introduce new formal frameworks
especially designed for modeling file systems. Because
these specialized frameworks do not support model check-
ing, proofs require manual effort. In contrast, we apply
generic formalisms, which enable automatic verifications.

The technique of reducing complex systems to sim-
ple models to reason about consistency has been used be-
fore [11, 19]. In particular, the storage service model in-
troduced in [19] is a valid abstraction, however the model’s
use of histories made it inappropriate for model-checking.

5

7. Conclusions and Lessons Learned

We have presented our experience with applying for-
mal methods to analyze and compare three real-world fault-
tolerant file systems. We now share four of the lessons we
learned from our experiment.

First, moderately detailed TLA+ specifications of real
systems are not as hard to produce as we had thought be-
forehand. For example, one student wrote a first workable
specification for GFS in about two weeks. Clearly, the more
in-depth the specification is, the more time it takes to write.
But overall, we believe that writing a high-level specifica-
tion by a system designer is a fairly easy task, yet a remark-
ably useful one for understanding the system.

Second, we found that the exercise of writing TLA+
specifications exposed similarities in seemingly dissimilar
systems. This was the case for GFS and Niobe, where we
factored out all common mechanisms into one abstraction.
We believe that our common TLA+ specification can ease
the building of specifications for other primary-secondary-
master systems (e.g., Boxwood [15]).

Third, formal specifications enable insightful semantic
comparison, even between strongly and weakly consistent
systems. By building client-centric models of the systems
and comparing them, we were able to understand better how
the systems behave and to reach several conclusions, e.g.:

1. Niobe and Chain perform similarly from a client per-
spective, implementing similar client-centric models.

2. GFS can be upgraded to regular register semantics via
a clear set of assumptions.

3. GFS’ design decision to read from any replica for per-
formance heavily influences its consistency model. In
particular, if Niobe were to adopt this design decision
for performance, its consistency model would degrade
from linearizability to regular-register.
Finally, we found that intuition can often be unreli-

able, and thus backing it up with formal verification is use-
ful. For example, after verifying that Chain implemented
Chain SimpleStore, we truly believed that the same model
was right for Niobe, as well, without realizing that it missed
one type of Niobe transition. It then took several iterations
of the model to arrive at the right model (Niobe SS).

Thus, our practical experience has shown that for-
mal specifications and methods are useful tools for design-
ing, analyzing and comparing fault-tolerant file systems.
Through the use of such tools, systems designers can in-
crease the trust in the behavior of these important infras-
tructure components in the presence of failures.

8. Acknowledgments

We thank Hank Levy and Chandu Thekkath for their
valuable comments on the paper, and Idit Keidar, Dahlia
Malkhi, and Yuan Yu for their ideas during our work. We

also thank the anonymous reviewers for their valuable com-
ments. This work was mostly done during an internship at
Microsoft Research. Roxana Geambasu is supported in part
by National Science Foundation Grant NSF-614975.

References

[1] M. Abadi and L. Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 1991.

[2] K. Bhargavan, M. Shapiro, and F. le Fessant. Modelling repli-
cation protocols with actions and constraints, 2003.

[3] M. Bickford and D. Guaspari. Formalizing the chain replica-
tion protocol. http://www.cs.cornell.edu/Info/Projects/
NuPrl/FDLcontentAUXdocs/ChainRepl, 2006.

[4] D. Chkliaev, P. van der Stok, and J. Hooman. Formal mod-
eling and analysis of atomic commitment protocols. In Proc.
of the Conference on Parallel and Distributed Systems, 2000.

[5] E. Clarke and J. Wing. Formal methods: state of the art and
future directions. ACM Computing Surveys, 28(4), 1996.

[6] J. Crow and B. D. Vito. Formalizing space shuttle software
requirements: four case studies. ACM Transactions on Soft-
ware Engineering and Methodology, 7(3), 1998.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, and W. V.
P. Vosshall. Dynamo: Amazon’s highly available key-value
store. In Proc. of ACM SOSP, 2007.

[8] R. Geambasu, A. Birrell, and J. MacCormick. TLA+
Specifications and Proofs for Niobe, GFS, and Chain.
http://cs.washington.edu/homes/roxana/fm/, 2007.

[9] S. Ghemawat, H. Gobioff, and S. Leung. The Google File
System. In Proc. of ACM SOSP, 2003.

[10] I. Houston and S. King. CICS project report: Experiences
and results from using Z. In Proc. of Formal Development
Methods, 1991.

[11] R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and
Y. Yu. Checking cache-coherence with TLA+. Formal Meth-
ods in System Design, 2003.

[12] L. Lamport. On interprocess communication. Distributed
Computing, 1986.

[13] L. Lamport. Specifying Systems. Addison Wesley, 2003.
[14] L. Lamport, Y. Yu, and L. Zhang. TLA+ tools. re-

search.microsoft.com/research/sv/TLA Tools, 2007.
[15] J. MacCormick, N. Murphy, M. Najork, C. Thekkath, and

L. Zhou. Boxwood: Abstractions as the foundation for stor-
age infrastructure. In Proc. of OSDI, 2004.

[16] J. MacCormick, C. Thekkath, M. Jager, K. Roomp, L. Zhou,
and R. Peterson. Niobe: A practical replication protocol.
ACM Trans. Storage, 2008.

[17] K. Shimizu and D. Dill. Using formal specifications for func-
tional validation of hardware designs. IEEE Des. Test, 2002.

[18] M. Sivathanu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and
S. Jha. A logic of file systems. In Proc. of the USENIX
Conference on File and Storage Technologies, 2005.

[19] R. van Renesse and F. Schneider. Chain replication for high
throughput and availability. In Proc. of OSDI, 2004.

[20] J. Wing and M. Vaziri. A case study in model checking soft-
ware systems. Science of Computer Programming, 1997.

[21] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using
model checking to find serious file system errors. In Proc. of
OSDI, 2004.

6

