
Organizing and Sharing
Distributed Personal Web-Service Data

Roxana Geambasu, Cherie Cheung, Alexander Moshchuk,
Steven D. Gribble, and Henry M. Levy

Department of Computer Science & Engineering
University of Washington, Seattle, WA, USA 98195

{roxana, cherie, anm, gribble, levy}@cs.washington.edu

ABSTRACT
The migration from desktop applications to Web-based services
is scattering personal data across a myriad of Web sites, such as
Google, Flickr, YouTube, and Amazon S3. This dispersal poses
new challenges for users, making it more difficult for them to: (1)
organize, search, and archive their data, much of which is now
hosted by Web sites; (2) create heterogeneous, multi-Web-service
object collections and share them in a protected way; and (3) ma-
nipulate their data with standard applications or scripts.

In this paper, we show that a Web-service interface supporting
standardized naming, protection, and object-access services can
solve these problems and can greatly simplify the creation of a
new generation of object-management services for the Web. We
describe the implementation of Menagerie, a proof-of-concept pro-
totype that provides these services for Web-based applications. At
a high level, Menagerie creates an integrated file and object sys-
tem from heterogeneous, personal Web-service objects dispersed
across the Internet. We present several object-management appli-
cations we developed on Menagerie to show the practicality and
benefits of our approach.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems; H.3.5
[Online Information Systems]: Web-based services, Data sharing

General Terms
Design, Performance

Keywords
Web services, Menagerie, data sharing, data organization

1. INTRODUCTION
The Web is catalyzing a transition from PC-based software and

file systems to Internet-based applications and Web services. In the
past, users relied solely on their desktop systems to execute appli-
cations and store their personal data. Today, many desktop appli-
cations have feature-rich “software-as-a-service” counterparts, in-
cluding Web-based email systems, media editing tools, and office
productivity suites. Similarly, services such as Flickr, YouTube,
Blogger, and Amazon’s S3 allow users to store, edit, and share their
data via the Web.
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

photos

trip

/

work

HR

Flickr

YouTube
Google

Docs

BloggerHotmail

(a) data integrated into the

 desktop file system

(b) data isolated across separate

Web services

Figure 1: PCs vs. Web services. In the desktop-centric world, users can
organize and share their application data through the file system. In today’s
Web, data is increasingly trapped inside the Web service that operates on it.

Web-based services offer compelling advantages over traditional
desktop software. Specifically, users can access their Web services
and data through multiple devices from anywhere in the world. The
Web eliminates administrative tasks such as software installation
and update, and it facilitates the network effects that come from
having a large community of connected users.

However, PC-based systems have compelling advantages of their
own, many of which arise from the functions provided by the desk-
top operating system and file system. The OS supports a set of com-
mon, beneficial services that we take for granted. Users can name,
organize, and access all of their files within a single hierarchical
namespace, irrespective of which applications natively operate on
them (Figure 1a). Similarly, applications written by different soft-
ware vendors can interact with each other through the protected
sharing interfaces exposed by the OS, providing users with new
composite functions.

As the transition to the Web continues, we risk losing the advan-
tages enjoyed by desktop systems. Users’ personal data and ob-
jects are frequently trapped inside the different Web services that
they use (Figure 1b). Consequently, users and services face a set of
significant new challenges:

Data organization and management. On the desktop, a user can
create a folder to hold related files and objects. On the Web, users’
data is scattered across the Internet, where it is housed by a myriad
of independent Web services. Given this, how can she organize,
manage, archive, or search her Web objects and files as a unit?

Protected data sharing. While publishing is greatly simplified in
the Web service environment, protected sharing, particularly at a
fine grain, becomes more difficult. For example, how should one
user share a specific subset of her objects with another user? Does
the other user need to create accounts on all relevant Web services,
and if so, do all of these services support the restricted sharing of
only a select object subset?

Data manipulation and processing. Web services restrict the op-
erations that can be performed on their objects: they typically ex-
port a limited API and expose only a small set of user commands
through the browser. In contrast, the power of a system such as
Unix derives, in part, from its simple data-processing commands
(cat, grep, etc.) that can be composed together or extended to
manipulate data in new ways. How should we balance the need for
Web services to retain ownership over the data and functions they
provide, with the benefits that would be gained by allowing third
parties to extend services?

This paper examines these challenges. First, we discuss the prin-
ciples and requirements that must underlie any solution. Next, we
discuss the design and implementation of Menagerie, a proof-of-
concept system that embodies our solution principles. Menagerie
consists of two primary components: (1) the Menagerie Service
Interface (MSI), an API that facilitates inter-Web-service commu-
nication and access control, and (2) the Menagerie File System
(MFS), a software layer that allows “composite Web services” to
integrate remote Web objects into a local file system namespace,
reducing the engineering effort required to access and manipulate
remote data.

To demonstrate the value of our approach, we have prototyped
several new Web applications on top of Menagerie. Our experience
shows that it is possible to combine the ease of use, publishing, and
ubiquitous access advantages of Web services with the organiza-
tional, protected sharing, and data processing advantages of desk-
top systems.

2. MOTIVATION
In this section, we use a simple motivating scenario to expose

some of the shortcomings of the Web. From this scenario we derive
a set of required properties that a solution must have to overcome
these limitations.

2.1 A Simple Scenario
Figure 2 illustrates our simple motivating scenario. We consider

Ann, a product manager for a small company. Ann has moved
wholeheartedly to Web services for both her personal and busi-
ness data and information processing needs. Specifically, Ann uses
Flickr to manage her photo albums, Google Docs for spreadsheets
and word processing files, Hotmail to communicate with colleagues
and family, and Schwab to view an interactive stock ticker and
maintain her personal financial information.

Ann likes to keep her data well organized. In the past, she used
her PC’s desktop manager to create folders in which her related
files were stored or linked. Since many of her documents are now
Web-based, she would like to create virtual Web folders that are
populated with links to the appropriate Web objects and collections.
For example, she would like to collect all of her product marketing
resources into a single folder, in spite of the fact that they are spread
across many Web services.

Ann also wishes to securely share some of her virtual folders
with her colleagues, granting them access to view and edit the fold-
ers’ contents. However, she does not want her colleagues to have
access to all of her business files or to her personal files. In ad-
dition, not all of her colleagues have accounts on the same Web
services as Ann.

Finally, Ann is extremely careful with her valuable data and
wants to prevent against accidental deletion or an operational Web
service failure. She would therefore like to use a third-party
archival service to maintain historical versions of all of her Web
objects and virtual folders.

product folder

product
photos

Flickr albums

family
trip

land-
scapes

Google docs

salary
.xls

market
.xls

glossy
.doc

product
reviews

Hotmail folders

my
mail

Schwab

stock
ticker

Figure 2: Motivating Scenario. Ann would like to create a new folder that
links to some of her Flickr, Hotmail, Google Docs, and Schwab objects. As
well, she wants to share the folder and its contents with her colleagues, who
do not have accounts on all of these services.

2.2 Challenges
Given the limitations of today’s Web, it is extremely difficult for

Ann to accomplish her goals or for third-party Web services to help
her. Ann faces three classes of obstacles:

Naming. The Web services in our example provide users with the
abstraction of objects that can be manipulated in various ways. Un-
fortunately, not all of the services expose objects with a predictable,
stable URL; instead, some objects are externally presented by the
Web service as a diffuse collection of HTML elements, images,
frames, and JavaScript, whose URLs might be dynamically gen-
erated. Accordingly, users and third-party services have no easy
way to name each of the objects that Ann wishes to collect into her
virtual folders.

Protection. Ann needs to share some of her objects with her col-
leagues and with the third-party archival service, but she faces sev-
eral protection-related impediments. Each Web service has imple-
mented its own particular authentication, authorization, and sharing
scheme. Thus, Ann’s colleagues may need to create accounts on all
services to fully access her shared objects.

Even if single-sign-on accounts existed across the Web, many
services fail to offer flexible and fine-grained protection. In some
cases, sharing is all-or-nothing. For such services, allowing Ann’s
colleagues access to her professional objects may also reveal her
personal data. Sharing also may be limited in some ways; for ex-
ample, some Web services do not allow the sharing of different
subsets of objects with different subsets of users. Finally, some
services provide secure URLs that the user can hand out to grant
object access, but many of these services do not support the selec-
tive granting of write access or the revocation of rights.

Ann wants to grant her associates access to a single virtual folder,
implicitly giving them access to all of the objects within it. Unfor-
tunately, those objects are scattered across many different services,
each with its own authorization scheme. Short of Ann giving a
third-party aggregation service all of her Web credentials and trust-
ing that service with her objects, such sharing cannot be achieved.

Externalization and embedded rendering. Most Web services
do not expose object data directly to users and third party services.
Instead, they graphically present objects and interaction controls
as embedded elements within Web pages. In contrast, on desk-
top systems, the filesystem permits many programs, including file

managers, file sharing applications, editors, archivers, and security
scanners, to process the same data objects.

To realize our scenario, Web services must provide additional
functions that most of them lack today. In particular, they must
export externalized representations of their objects to allow third-
party services, such as archival or indexing services, to operate on
that data. For simple third-party services, the structure and seman-
tics of the externalized representation does not matter: the object
can be exported as an opaque set of bytes. For richer services,
a standardized or well-known representation, such as MIME for
email, would be more valuable.

Finally, Ann and her colleagues rely on a third-party service to
create and access virtual folders, and to browse the files within
them. To support this, origin Web services should provide useful
metadata and facilitate composite graphical interfaces that would
allow the objects to be rendered and operated on within arbitrary
Web pages. Flash movies exported by sites such as YouTube are
good examples of this.

2.3 Requirements of a Solution
In the PC-centric world, the operating system provides abstrac-

tions, system call interfaces, and utilities to help applications and
users overcome the challenges we describe above. In the Web, there
is no single trusted layer that users, browsers, and services can rely
on. We therefore believe that a new service interface must be de-
fined and adopted to provide the interoperability and integration
needed to realize even our simple motivating scenario.

This service interface could be defined via conventions on top of
the HTTP protocol (e.g., REST[8]), or new special-purpose proto-
cols could be designed for this purpose. Regardless, the challenges
we described motivate three clear requirements that the service in-
terface must support:

1. Uniform object namespace. To address the naming chal-
lenge described above requires a single global namespace in
which all personal data objects are embedded. That is, all
of the objects and object collections that users manipulate
should have a permanent, globally unique name within this
namespace, allowing the Web service, its users, and third-
party composite services to discover and depend upon these
names.

2. Fine-grained protection. To support data sharing and com-
posite services, a Web service must provide fine-grained pro-
tection of objects and collections. It should be possible for
the user to share only a portion of her objects from a ser-
vice, while keeping the other objects private. It should also
be simple to aggregate and share collections of distributed
objects.

3. Unified minimal object access. The combination of a
global, hierarchical namespace and fine-grained, protected
sharing of personal data allows users and services to find and
share objects with each other. To be useful, however, the ob-
jects must support some standard set of access functions. As
we argued above, the minimal set must include the ability
for objects to be embedded and rendered within an arbitrary
Web page, and for object data to be externalizable.

The next section presents the architecture and implementation
of Menagerie, a proof-of-concept prototype we have developed to
meet the challenges we have described. Menagerie allows us to ex-
periment with new Web applications that support the organization
and sharing of collections of heterogeneous Web service objects.
We will describe those applications in Section 4.

Application

MSI

C1 C2

Ann’s data
Service 1

MSI

Ann’s data
Service 2

MSI

MFS

Other
applications

FS
calls

Figure 3: The Menagerie Prototype. The figure shows two Web services
that export Ann’s objects, a composite Web application built using the MFS
layer, and the MSI capabilities (c1 and c2) that the application uses to access
the objects.

3. THE MENAGERIE PROTOTYPE
This section describes the structure and implementation of our

Menagerie prototype. Menagerie consists of two principle ele-
ments: the Menagerie Service Interface and the Menagerie File
System. We briefly introduce these elements here and then describe
them in more depth in the remainder of this section.

The Menagerie Service Interface (MSI) is an inter-Web-service
communications API that is comprised of object naming, protec-
tion, and access operations. MSI defines a uniform, hierarchical
name space into which Web services export the names of their ob-
jects. MSI supports fine-grained sharing of Web objects through
the use of hybrid capabilities. This protection scheme allows users
without service accounts to name and access objects, while also
giving services the ability to limit the actions of such users. MSI
also specifies a standard set of object-independent access functions
for Web services. These functions support object reading and writ-
ing, rendering, and metadata export. While our goal is to design an
interface that Web services can easily adopt, our prototype imple-
mentation also shows that Menagerie is deployable even without
Web service support.

The Menagerie File System (MFS) simplifies the development
of new, composite Web applications. MFS mounts remote MSI
object hierarchies into a local file system name space, allowing an
application to access remote Web objects through a standard file
system interface. Figure 3 depicts a composite Web application that
uses MFS to access the Web objects exported by two MSI-capable
Web services.

The remainder of this section describes in detail MSI’s naming,
protection, and content operations. Figure 4 shows the functions
we have implemented to date. This small set was sufficient to build
our example applications; as we gain more experience, we expect
the interface to evolve and grow.

3.1 Object Naming
We designed naming in Menagerie with two goals in mind. First,

users must be provided with meaningful object names that corre-
spond to the way users name objects inside of a Web service. Sec-
ond, composite applications must be provided with global, unique
identifiers for the objects they access, even though those objects are
scattered across heterogeneous Web services.

In Menagerie, each Web service exports an object name hierar-
chy for each of its users. This hierarchy contains the user-readable
names of all objects that each user can access. The structure
of this hierarchy and the granularity of each object within it are
left entirely up to the service, but it typically imitates the logi-
cal structure that the service exposes to its users. For example,
Flickr offers its users abstractions associated with sets of objects
(photo albums) and objects within each set (photos); therefore,

Namespace functions
list(capa, object_ID) returns list of object names and IDs
mkdir(capa, parent_ID, name)
getattr(capa, object_ID) returns object attributes

Protection functions
create_capa(capa, object_ID, rights) returns new capa
revoke_capa(object_capa, revoke_capa)

Content and Metadata functions
read(capa, object_ID) returns byte[]
write(capa, object_ID, name, content)
get_summary(capa, object_ID) returns string
get_URL(capa, object_ID) returns string

Figure 4: The MSI interface. This table shows the parameters and re-
turn types of each function. MSI services must support the naming and
protection-related functions, and may optionally support the others.

Flickr could choose to export a three-level name hierarchy (e.g.,
Ann/Disneyland-album/Mickey-photo).

Each object in Menagerie is identified using a service-local Ob-
jectID, which is unique within the service and independent of the
object’s location in the hierarchy. Using the service-local Objec-
tIDs, Menagerie mints globally unique object identifiers by com-
bining the service-local ObjectIDs with services’ DNS names. By
making ObjectIDs unique on each service (as opposed to glob-
ally unique), we give services the liberty to create and name new
objects independently. By making an object’s ID independent of
the object’s location within the service’s hierarchy, we ensure that
caching and other optimization opportunities are preserved even if
the object can be reached via multiple paths.

Three functions in MSI support name hierarchy operations:
list, getattr, and mkdir. Given the unique ID of a collec-
tion node in a hierarchy, list returns the names of all the children
of that node, as well as their unique IDs. Getattr returns the at-
tributes of the object with the given ID, including the type of object,
a capability for the object (see Section 3.2), the size of the object
in bytes, and various additional metadata. Mkdir adds a collec-
tion object to the hierarchy. Individual objects are created using the
MSI write function, as we will see in Section 3.3.

3.2 Protection
While designing Menagerie’s protection model, we considered

the two fundamental access control mechanisms: capabilities and
access control lists (ACLs). These mechanisms generally lie at
opposite ends of a spectrum. Capabilities simplify sharing, while
ACLs enable tight access control and user access tracking. While
our goal is to simplify fine-grained, distributed object sharing, we
must also provide services with the ability to control and track ac-
cess to their data.

Menagerie therefore adopts a hybrid capability-based protec-
tion system, which combines the benefits of both mechanisms.
A Menagerie capability is an unforgeable token that contains the
globally unique ID for an object and a set of access rights. Posses-
sion of a capability gives the holder the right to access the object in
the specified ways. Capabilities support sharing because they are
easy to pass from user to user: Menagerie’s capabilities are encoded
in URLs that can be emailed or embedded in Web pages.

However, a Menagerie capability is also subject to control by the
Web service whose object it names. A service can divide its object
rights into two types: open-access rights and closed-access rights.
An open-access right gives the holder of the capability direct access
to the specified operation without further authentication; e.g., if the

Root Node
global ID Password Openaccess

Rights
Closedaccess

Rights

CapTable – stored at the service

Root Node
global ID Password

Capability – token given out by the service
64 bits 128 bits

...

Capability
validation

Figure 5: Hybrid Capability Protection. A capability provides access to
objects within a sub-hierarchy rooted in the object identified by Root Note
ID. Open-access rights allow direct object access on the basis of a valid
capability, while closed-access operations also require user authentication.

right allows the user to read the object, then the service will return
the object’s contents when presented with a capability with the read
bit set. Since a capability is not associated with any principal, an
“open-access” operation cannot be attributed to a particular user.

A closed-access right, however, requires additional authentica-
tion. To perform an operation associated with a closed-access right,
a capability with that right enabled is necessary but not sufficient:
the user must also authenticate himself before the service will per-
form the operation. In most cases, this will require an account on
that service. By “closing access” to an operation, the service can
track the user that invokes the operation, or enhance the user’s ex-
perience with personalized functions.

To implement capabilities, we use the password-capability
model [4, 24]. The structure of a Menagerie capability is shown
in Figure 5. The capability specifies a globally unique ID of a node
in a service’s hierarchy and it authorizes access to the entire sub-
hierarchy rooted in that node. The capability also contains a long
“password” – a random field chosen from an astronomically large
number space. The password is generated by the service at capabil-
ity creation time and ensures that the capability cannot be guessed.
A service stores information about all capabilities it creates in a ta-
ble called CapTable, whose structure is also shown in Figure 5. Be-
cause the service stores the capability rights, they cannot be forged
by users.

As seen in Figure 4, every MSI method call passes at least two
parameters: a capability token for an ancestor of the accessed ob-
ject within the service’s hierarchy and the object’s ObjectID. Upon
an MSI invocation, the service checks that the ancestor relationship
holds and that a corresponding (root node ID, password)
pair can be found in its CapTable. If not, the capability is invalid
and the operation fails.

MSI provides functions for creating and revoking capabilities:
create_capa and revoke_capa. When a user requests a ca-
pability from a service (using create_capa), the service returns
a URL that embeds the new capability. In this way, capability shar-
ing is similar to URL sharing in the Web. Revocation of a capabil-
ity simply zeroes the rights fields in the capability’s CapTable entry.
To prevent arbitrary users from revoking capabilities, revocation re-
quires a valid capability to the same object with the REVOCATION
right enabled.

Several current Web services already use slight variations of a
hybrid-capability protection model, which confirms the applicabil-
ity of our approach. As one example, Flickr and other Yahoo! ser-
vices provide “browser-based authentication [33],” which is essen-
tially a capability-based scheme; it allows users to obtain a “token”
for an object, specify a set of rights enabled by that token, and pass
the token to an application. As another example, Google Calendar
offers users “secret URLs” to their calendars, which they can give

to friends. These URLs are a type of capability that can be used to
view, but not modify, the user’s calendar. To share a calendar with
update rights, the user must add the sharee to the service’s ACL.

Our hybrid-capability protection scheme meets our fine-grained
sharing goal: it simplifies limited sharing of objects and collections,
while providing services with control over more important opera-
tions. Menagerie’s protection system is flexible enough to support
all of the protection policies we encountered in the Web.

3.3 The Object Content Access Interface
MSI provides composite Web applications with two different

ways to access objects. First, for mashup-style applications,
Menagerie permits a composite application to embed an object
from a remote service within a Web page. The remote service is
responsible for the presentation and interaction controls of that em-
bedded object, similar to how YouTube provides embeddable, in-
teractive objects for displaying video.

To support building expressive composite GUIs, MSI defines
a set of metadata access functions, including get_summary
and get_URL. The get_summary function returns an HTML
snippet that describes the object visually. For example,
get_summary returns an tag for a Flickr photo’s thumb-
nail, an <object> tag for a YouTube video, and a summary for
a Gmail email. The Menagerie Web Object Manager application in
Section 4.1 uses this function to present distributed collections in a
visual manner.

Similarly, get_URL provides the link to the object’s URL
within the parent service. Just as today’s desktop file manager
applications use a file-application binding database in systems
like Windows to launch the appropriate application when the user
double-clicks on a file, our Menagerie Web Object Manager uses
URLs to redirect the user back to the parent service when a user
clicks on a particular object.

Second, for composite applications that need to directly ma-
nipulate object contents, MSI provides a small, standard set of
object-independent access functions. These functions, which in-
clude read, write, and delete, allow an application to down-
load, manipulate, and upload the objects directly from Web ser-
vices. MSI does not mandate any particular object representation
or format: how a service chooses to externalize an object is en-
tirely its own choice. Some composite applications, such as the
archival service we described in Section 2.1, do not need to un-
derstand an object’s format. Others, such as an indexing, image
editing, or video distillation service, will need knowledge of the
object’s format. Over time, we expect services will gravitate to-
wards standard object types and formats.

3.4 Implementation
Figure 6 shows the structure of our prototype Menagerie imple-

mentation. We chose to define MSI as an XML-RPC [30] layer
on top of HTTP, so that services can make use of standard Web
programming toolkits and frameworks to define, access, and export
MSI functions. As well, by using XML-RPC, we could take advan-
tage of existing Web caching components (such as Squid) within
our composite applications to improve their performance.

To experiment with composite Menagerie applications, we
needed to access Web services that support MSI. As an incremental
deployment strategy, we have built MSI proxies for existing (non-
MSI) services. An MSI proxy implements the MSI functions and
Menagerie protection model on behalf of a service, making it MSI
compliant without needing to modify the service itself. To date, we
have implemented proxies for five popular Web services: Gmail,
Yahoo! Mail, Flickr, YouTube, and Google spreadsheets.

non-MSI
Web service

MSI proxy

MSI native
Web service

squid cache Web
application

code

VFS

FUSE ext3

MFS + libfuse

Web
browser

user

HTTP

MSI over
XML-RPC

MSI over
XML-RPC

HTTP

composite Web application
u
s
e
r

s
p
a
c
e

k
e
rn

e
l

s
p
a
c
e

Figure 6: Prototype implementation. Our prototype system uses proxies
to bridge legacy Web services to MSI. Composite Web applications can
make use of MFS, which is implemented using the FUSE user-level file
system framework. We have implemented MSI using XML-RPC, which is
itself layered on HTTP.

For services that provide developer APIs, we found it easy to im-
plement proxies, as we could simply bridge between the services’
REST or SOAP functions and our associated MSI functions. For
services that do not provide developer APIs, building proxies was
more challenging, as we had to use awkward and unstable Web
scraping techniques to access the appropriate service functions and
objects. Overall, however, proxies are a more secure and practical
incremental deployment path than requiring each composite service
to perform Web service scraping in its own way.

3.4.1 The Menagerie File System
The Menagerie File System (MFS) is a user-level file system

based on FUSE [23] that simplifies building composite applica-
tions. MFS lets a composite application mount the MSI name hi-
erarchies exported by Web services into its local file system. As a
result, an application can access remote MSI objects using standard
file system operations and user-level programs.

To mount a service hierarchy, the composite application must
receive a capability for that hierarchy from the user and then pro-
vide the capability to MFS. Once mounted, the service can then
use standard file system commands and tools, such as cp and tar,
to operate on the objects. These tools issue system calls such as
getattr, readdir, read, and write. The calls get passed
via VFS [15] to MFS, and then translated into the corresponding
MSI calls on the remote Web services. As well, metadata functions
in MSI are exposed as extended file system attributes through MFS.

To boost MFS’s performance, we provide composite services
with two caches. MFS has an internal metadata cache for rapid re-
trieval of short-lived file system metadata, and it uses the Squid [9]
cache to store data returned by MSI read and get_summary
functions.

3.5 Summary
In this section, we described the architecture and implementa-

tion of our prototype Menagerie system. Through the use of Web
service proxies and the MFS support layer, we made it possible
for both existing and new Web services to communicate with each
other through our Menagerie service interface. In the next section
of the paper, we demonstrate the practicality and usefulness of our

(a) Menagerie Web Object Manager (WOM) (b) Menagerie Group Sharing Service (MGS)

Figure 7: Screenshots of two Menagerie-based Web applications. (a) This figure shows how Ann organizes her product-related Web objects using WOM.
The right half shows the thumbnails of Ann’s product photos on Flickr. The left half shows one of Ann’s organizational folders, which already contains some
objects. Ann is now dragging a product photo onto her new folder. (b) This figure shows how Ann and her colleagues Bob and Carol, all users of the MGS
service and members of the Computer Store group, share objects with their group. Ann has shared some of a Flickr product photo, a YouTube video, and
an email, Bob has added two Flickr photos and a Google spreadsheet of product prices, and Carol has put one Gmail email and one Flickr photo.

approach by building a set of powerful, easy to construct, compos-
ite Web applications.

4. MENAGERIE APPLICATIONS
As the trend towards Web-based applications continues, we be-

lieve that applications that support organizing, sharing, and manip-
ulating distributed Web service objects will become increasingly
important. This section presents several applications that we built
using our Menagerie prototype. Our goal is to demonstrate the
types of applications that Menagerie enables, and to show how
Menagerie simplifies their implementation.

4.1 The Menagerie Web Object Manager
The Menagerie Web Object Manager (WOM) is a composite

Web application that lets users organize and share their distributed
Web objects. With WOM, users can create new virtual folders, pop-
ulate those folders with collections of distributed Web objects, and
share the folders with other users or services. WOM is a generic
desktop, similar to file managers like Nautilus or Windows Ex-
plorer, but for Web objects. A WOM user can access and manipu-
late all of her Web service objects using the WOM Web interface;
behind the scenes, WOM mounts and operates on the object hierar-
chies exported by the user’s services.

The screenshot in Figure 7(a) shows how Ann organizes the Web
resources for her business. When Ann first created her WOM envi-
ronment, she mounted her Web service hierarchies (Flickr, Gmail,
Google Docs, and YouTube) by pasting capabilities for those hi-
erarchies into a Web form. WOM retains those capabilities and
remounts the hierarchies using MFS whenever she logs in.

The WOM Web page is split in half. On the right, the user can
navigate through her objects and mounted hierarchies. The expand-
able tree on top lists Ann’s currently mounted hierarchies. In Fig-
ure 7(a), Ann has opened her Flickr Product Photos album.

The left side presents the user’s virtual Web object fold-

ers. Users can create directory hierarchies and populate them
by simply dragging-and-dropping objects from the right side
of the interface to the left. In the figure, Ann has created
a Computer_Store directory, containing sub-directories for
Computer_Accessories and Printers. Ann is currently
populating her Computer_Accessories folder; that directory
includes two instructional YouTube videos, two customer emails
from Gmail, and a folder with financial Google spreadsheets. The
figure shows that Ann is in the process of dragging a Flickr product
photo onto her Computer_Accessories directory.

WOM is only organizational; objects remain stored and man-
aged by their respective Web services. Clicking on a object leads
back to its origin Web service. For example, clicking on a Google
spreadsheet in Ann’s virtual folder causes Google Docs to popup
a browser with that spreadsheet opened. Although the Web ob-
jects are only linked to the virtual folder, WOM can still render
thumbnails of the objects. To retrieve the HTML code that dis-
plays the thumbnail for a specific object, WOM reads the object’s
SUMMARY extended attribute from MFS, which causes MFS to is-
sue a get_summary call to the appropriate service.

Our WOM implementation exports MSI, which allows users to
further export their new organizational structures. For example,
a user can request a capability for a WOM virtual folder hierar-
chy and share that folder with other people and services by passing
them that capability. Because WOM is a native MSI service, it
requires no proxy.

WOM provides useful organization and sharing features, yet it
was easy to build on top of our Menagerie prototype. One devel-
oper implemented WOM in roughly 3 days. The WOM codebase
contains 275 lines of code: 131 lines of PHP code containing the
application logic, and the remainder to perform HTML formatting.

4.2 The Menagerie Group Sharing Service
The Menagerie Group Sharing Service (MGS) is a Web applica-

tion that lets users form groups and share collections of Web objects
from their Web services. MGS is similar to MySpace, but it is tar-
geted at groups rather than individuals. That is, while WOM lets a
single user create and share virtual object organizations, MGS lets
several users share a single virtual desktop.

We implemented MGS by modifying Gallery 1 [18], a popular
Web-based photo sharing application. Hence, MGS borrows its
GUI from Gallery. We enhanced Gallery to run on Menagerie, to
display any type of resource (not just photos), and to support user
groups. Figure 7(b) presents a screenshot of MGS, in which Ann,
Bob, and Carol have created a group called Computer Store
Group to share business information amongst themselves and with
other colleagues. Ann has shared a photo, a video, and an email
on the group page; she does not want to share her entire WOM
Computer_Store directory with the colleagues because it con-
tains confidential financial data. Bob has added two Flickr pho-
tos and a spreadsheet with product prices, and Carol has added an
email and a photo. All resources are displayed in the group’s Web
page on MGS. Adding resources to the page is similar to adding
resources in WOM; the user pastes a capability into a form to give
MGS access to an object or hierarchy.

Modifying Gallery to build MGS took a single day for one de-
veloper. The conversion required only 73 new lines of code (32
related to HTML formatting), modification of 3 lines, and removal
of 91 lines from Gallery.

4.3 MFS-based Applications
The WOM and MGS examples show how new Web-object man-

agement services can leverage the global naming, protection, and
unified access functions that Menagerie provides. As well, the
Menagerie File System lets any application treat Web objects as
abstract files. As a result, services can apply existing file-based pro-
grams or scripting languages to remote Web objects or to the kinds
of Web-object collections that Menagerie enables. Below, we give
several examples of the power of this “backwards compatibility”
provided by MFS.

Backup and Restore Service. Today’s users have backup tools for
safely archiving their desktop data. However, for user data stored
by Web services, users must trust the service to maintain their data,
perhaps forever, as no generic Web object backup-and-restore ap-
plication exists.

Using Menagerie, a backup-restore service that operates on dis-
tributed Web object collections can be built with a simple set of
existing applications or commands, such as tar and untar in
UNIX. For example, suppose that Ann wants to back up her dis-
tributed WOM Computer_Store folder. Ann provides the ca-
pability to that folder to the backup-restore service, which uses the
capability to mount Ann’s object hierarchy. To the service, Ann’s
distributed Web objects look like a local UNIX file tree. There-
fore, the backup-restore service can archive Ann’s objects with the
following commands:
cd /mfs/Ann/WOM
tar -czf /backups/Ann/Computer_Store.tgz \

Computer_Store

This creates a tar archive in the /backups folder on one of
the backup-and-restore Web service’s machines. Provided that
all capabilities involved have the READ right enabled, the tar
causes backup-restore’s MFS to read the contents of each ob-
ject recursively, first from WOM and then from the appropri-
ate hosting service. The resulting archive will contain the entire
Computer_Accessories folder hierarchy and the contents of
all the distributed objects in it. Similarly, the service can use
untar to restore those objects at a later time.

Changing email providers. Users may wish to migrate from one
Internet mail system to another, or to consolidate multiple accounts.
While some email services support interchange, this is not a gen-
eral feature. Menagerie can simplify the task of email migration.
For example, a new third-party Web application for migrating from
one mail account (e.g., Yahoo!Mail) to another (e.g., Gmail) could
be built on Menagerie through MFS using the following, perhaps
surprisingly simple, command:

cp /mfs/Ann/Yahoo/*/*/msg /mfs/Ann/Gmail

This command processes all of the folders and message directories
in the user’s Yahoo!Mail, copying each msg, which contains the
contents of an individual email, to the Gmail account. The com-
mand assumes that the new changing-email-providers application
has mounted Ann’s Gmail and Yahoo!Mail hierarchies. The result
is to send each Yahoo message to the user’s Gmail account, where
it will appear in her Inbox folder.

This example needs further explanation. First, this email ex-
change is facilitated by the fact that our Menagerie proxies for
Gmail and Yahoo!Mail implement a common XML-based schema
for emails. If the services did not export the same email format,
the new application would need to perform a schema mapping
for each email. Second, the copy command does not recreate the
same folder structure; a simple loop that first creates the folders
(labels) easily solves this problem. Finally, our implementation
places attachments and message content in separate files, which
makes copying an email with attachments more difficult; a 10-line
script (omitted here) deals with this by combining the attachment
and message into a single file before copying it to Gmail.

While the full explanation of this process is more complex than
the single-line cp command above, the example shows the power
of providing UNIX file access to object hierarchies.

Synchronizing email contacts. Although some email services let
users import contacts from other services, they do it in an ad-hoc
manner in which each Web service knows how to fetch contacts
only from the most popular other services.

With Menagerie, multi-email contact synchronization is easier
because the distribution is transparent. In particular, the application
need only understand contact formats and how to unify them. Since
our proxies for Yahoo!Mail and Gmail export the same contact for-
mats, as noted above, we can leverage existing file synchronization
tools such as Unison. For example, a Web application for synchro-
nizing the contacts between Gmail and Yahoo!Mail accounts can
be done as follows:

cp /mfs/Ann/Yahoo/contacts/* /tmp/Y
cp /mfs/Ann/Gmail/contacts/* /tmp/G
unison /tmp/Y /tmp/G
cp /tmp/Y/* /mfs/Ann/Yahoo/contacts
cp /tmp/G/* /mfs/Ann/Gmail/contacts

In this example, the new contact synchronizer application copies
the user’s contacts into a local temporary file prior to running Uni-
son because Unison creates its own temporary files in the directo-
ries it synchronizes. In Menagerie, executing Unison directly on
the Web service files would result in the creation and then removal
of new contacts on the Web service. To avoid this overhead, we
first download the contacts locally, run Unison on them, and then
upload the unified contact set. Note that we rely on the user to
resolve conflicts, since neither Gmail nor Yahoo!Mail reports the
time of the last contact modification.

The MFS Desktop Bridge. MFS was designed to simplify build-
ing composite Web services, but it is also valuable as a desktop
operating system component. By running MFS on a desktop, the

Service Oper. Menagerie Total Menagerie
(ms) (ms) percent

Gmail ls 37 250 14.0%
read 128 1,549 8.2%

Ymail ls 35 955 3.6%
read 121 3,943 3.0%

Flickr ls 35 364 9.6%
read 74 1,624 4.5%

GDocs ls 41 348 11.7%
read 122 3,194 3.8%

Table 1: Menagerie latency compared to total latency for directory
listing (ls) and remote data read (rd) on several services. Menagerie is a
small fraction of the total latency for existing Web services.

user can mount and access her Web objects as files within the file
system. As a result, the user can take advantage of desktop appli-
cations to operate on Web data: MFS acts as a bridge between the
user’s desktop and Web environments. For example, using MFS,
we have used Adobe Photoshop to edit Flickr photos, Microsoft
Excel to operate on a spreadsheet stored within Google Docs, and
Nautilus to navigate through Web objects, all without changing the
applications themselves.

4.4 Summary
In this section we presented example applications built using

Menagerie. We showed how Menagerie lets services access Web
objects through existing desktop applications and command lan-
guages. Our examples are not meant to be complete, but instead
to stimulate the imagination of what is possible given the features
that Menagerie provides. Overall, our examples demonstrate two
key points. First, a common set of naming, protection, and access
operations for Web services greatly simplifies the creation of new
organization and sharing services for heterogeneous Web objects.
Second, a file-access facility for Web objects provides a powerful
path to leverage legacy command languages and applications in the
new world of software as a service.

5. EVALUATION
In this section we evaluate Menagerie, focusing on three ques-

tions. First, what additional latency does the Menagerie layer add
to Web service data accesses, compared to direct access without
Menagerie? Second, which internal components of Menagerie are
most responsible for overhead? Third, how does the performance
of the MFS Desktop Bridge compare to other methods for editing
personal data?

We have not spent effort to optimize or tune Menagerie; rather,
our goal was to build a straightforward and extensible framework
for experimentation. Nonetheless, our results demonstrate that per-
formance of our current prototype is competitive with other remote
access Web technologies and is fast enough to be usable in practice.

For our measurements we created a Menagerie measurement ser-
vice that ran Menagerie (including MFS, FUSE, and the Squid
cache) and the measurement applications on an Intel P4 3.2 GHz
CPU with 2GB of memory. We ran the MSI proxies for existing
services on a separate machine with a similar configuration. Both
machines ran Fedora Core 5, Squid 2.6, and Firefox 1.5. The two
machines were connected via a 100Mbps switch.

5.1 Menagerie Overhead
For our first question – the additional cost of Menagerie in ac-

cessing Web service data – we measured the latency for two simple
operations performed on Web services through Menagerie. Table 1

0%

20%

40%

60%

80%

100%

ls rd ls rd ls rd ls rd

Proxy
Protection
Squid time
XML-RPC
MFS

Gmail Ymail Flickr GDocs

2.4 0.93.0

13.511.9 13.5

52.1

34.9

0

10

20

30

40

50

60

Read Save

Ti
m

e
(s

)

Local
MFS - cache hit
MFS - cache miss
Firefox

2.4 0.93.0

13.511.9 13.5

52.1

34.9

0

10

20

30

40

50

60

Read Save

Ti
m

e
(s

)

Local
MFS - cache hit
MFS - cache miss
Firefox

Figure 8: Breakdown of latency by Menagerie component for directory
and read operations on four Web services. The Python-based XML-RPC
library dominates the Menagerie latency; MFS is the next largest factor.

shows the latency for a directory listing and a remote data read in-
voked through Menagerie/MFS to Gmail, Yahoo Mail, Flickr, and
Google Docs. The data is read by an application performing a cat
of a 4.7MB file. The table shows that Menagerie represents only a
small fraction of the total latency (less than 15%) for these opera-
tions. Not surprisingly, network latency and service time dominate.
For example, the Flickr directory listing takes 364 ms to complete,
of which 35 ms (9.6%) are spent in Menagerie components (MFS,
MSI, and the proxy).

To answer our second question – where the time goes inside of
Menagerie – we exclude the network and Web service times and ac-
count for the time spent in the various Menagerie components. For
this measurement, we logged messages at key places, such as just
before MFS issues an XML-RPC request to a proxy, or when the
corresponding RPC function is called in the proxy, and computed
the time spent in different components by subtracting the times-
tamps of the appropriate messages.

Factored into the Menagerie latency is the time spent in five of
its components: (1) the Menagerie File System (MFS), which has
both user-mode and kernel-mode components, (2) XML-RPC, (3)
the Squid cache, (4) the Menagerie protection manager, including
capability validation and credential translation, and (5) the Web ser-
vice MSI proxy, which includes parsing and building requests to the
existing Web services.

Figure 8 breaks down the latency for these five components. In
most cases, the dominating latency is caused by the Python-based
XML-RPC, which represents about half of the total latency on av-
erage. The time spent in MFS represents from 20% to 38%, due
primarily to our user-level file system code; this could be reduced in
an all-kernel-level implementation. The use of Web-service prox-
ies has a smaller impact on total latency, on average about 15.2%.
The cost of the protection system is negligible in all cases. Overall,
then, the greatest potential for improvement lies in the XML-RPC
system. Given the small cost of Menagerie compared to network
latency and Web service time, however, it is not clear that such
optimization is warranted.

5.2 MFS Desktop Bridge Performance
Consider the task of opening, modifying, and saving a spread-

sheet. Traditionally, users invoked desktop applications such as
OpenOffice to perform this task. With the advent of rich Ajax-
based interfaces for online document editing, such as Google
Spreadsheets, users can now perform the same task via their
browsers. The Menagerie Desktop Bridge presents a third alter-
native; for example, users can operate on a remote Google spread-
sheet using local PC-based spreadsheet applications.

We compare these three scenarios in Figure 9, which shows the

0%

20%

40%

60%

80%

100%

ls rd ls rd ls rd ls rd

Proxy
Protection
Squid time
XML-RPC
MFS

Gmail Ymail Flickr GDocs

2.4 0.93.0

13.511.9 13.5

52.1

34.9

0

10

20

30

40

50

60

Read Save

Ti
m

e
(s

)
Local
MFS - cache hit
MFS - cache miss
Firefox

2.4 0.93.0

13.511.9 13.5

52.1

34.9

0

10

20

30

40

50

60

Read Save

Ti
m

e
(s

)

Local
MFS - cache hit
MFS - cache miss
Firefox

Figure 9: Performance comparison of four spreadsheet-handling sce-
narios. A comparison of opening and saving a spreadsheet in four cases:
OpenOffice access to a local spreadsheet; OpenOffice access to a remote
Google spreadsheet via the MFS bridge, shown for both a cache hit and
cache miss; and Firefox browser access to a remote Google spreadsheet.

performance seen by the user when opening an identical spread-
sheet, modifying 2 cells, and saving the file. For the MFS bridge
scenario, we report the performance for two cases: OpenOffice hit-
ting in the MFS squid cache, and missing in the cache. We used
Firefox to access a remote Google spreadsheet in our third scenario.

For cache hits, the MFS solution performs nearly as well as ac-
cessing a local file. Surprisingly, saving the spreadsheet with MFS
is 2.3 times faster than saving it through the browser. The slow
speed of the browser solution is due mostly to the Ajax applica-
tion and its required rendering and server communication in deal-
ing with our 200KB spreadsheet. This may be addressed in the
future with more optimized Ajax engines.

Overall, Menagerie supports new functions on Web objects, as
witnessed by applications in Section 4, and it also enables the use
of existing applications to handle Web objects in a performance-
competitive way.

6. RELATED WORK
Menagerie builds upon many earlier efforts in Web technologies,

protection system, and extensibility. The Semantic Web [2] effort,
languages for describing Web service interfaces [5], and service
communication protocols [8, 27, 30] enable applications to find and
integrate Web service content. In this work, we identify the key
components that any Web service interface must provide in order
to enable a particular set of applications: generic applications for
organizing, sharing, and processing Web data objects within user
Web accounts.

Recently, the problems caused by the dispersal of users’ data
on the Web have received increasing attention from Web service
providers. Web-data aggregation sites (e.g., iGoogle [10], Face-
book [7], SecondBrain [21]), and Web-data processing applica-
tions [20] allow users to aggregate their Web objects from a set
of supported locations, share them, or process them. Each of these
applications must face the challenges of Web-account data integra-
tion (Section 2.3) on its own: it needs to devise its own naming for
Web objects, often request full control from the user on his remote
Web accounts, and write code to retrieve data from each service.
Solving such challenges for each application is inefficient. Thus,
we propose a new common service interface, which, if adopted,
would facilitate the building of applications, including some of the
ones enumerated above [20, 21].

Many individual Web services expose programmatic interfaces.
Recently, some social applications have agreed to support OpenSo-
cial, a common set of JavaScript and Google Data APIs for access-
ing social information [11]. Menagerie and OpenSocial have very
similar goals. However, Menagerie is more general, as it is not re-
stricted to social applications, while OpenSocial’s API has the ben-

efit of being tuned towards the needs of social application program-
mers. This tradeoff between generality and specificy is common to
many systems [6].

The need to decouple user-account data from Web services and
expose it to third-party applications has been recently formulated
in the W5 project [16]. While some of their concepts overlap
with Menagerie’s, including fine-grained protection and data ac-
cess, our contribution consists of a concrete instantiation of the re-
quired common interface, a working implementation, and experi-
ence with building useful applications to validate our approach.

The idea of using operating system concepts and abstractions
to address problems on the Web has been used previously. We-
bOS [25] provides OS abstractions for building large-scale appli-
cations over the wide-area, including global naming and authenti-
cation. Menagerie provides functions typically fulfilled by the OS
on the desktop to Web applications operating on the user’s Web
data. Similarly, Web file systems [1, 26, 29] enable the integration
of Web resources with the local file system. Unlike Menagerie,
these systems do not offer any support for sharing heterogeneous
collections of objects. Specific Web services provide file system
interfaces that let users access their Web objects and run desktop
applications on them [13, 14]. None of these supports the inte-
gration of resources from multiple Web services or the sharing of
heterogeneous Web objects. Yahoo! pipes [32] allows users to in-
tegrate RSS feeds and mashup Web site data using a visual, UNIX
pipe-like editor. Unlike Menagerie, Yahoo! pipes does not facili-
tate the fine-grained, protected sharing of personal Web objects.

Capability-based protection [17] has been used in many operat-
ing systems and distributed systems [4, 22, 24, 31]. Our hybrid ca-
pability mechanism resembles the authorized/unauthorized pointer
model first used in the IBM System/38 [3], which merges capabil-
ities with ACL-based authentication. Menagerie capabilities give
Web services the choice of automatically authenticated access via
capabilities or controlled access that combines capabilities and user
authentication.

Single sign-on systems have been proposed to allow users to
login to many services with a single account [19]. While single
sign-on simplifies user account management, it does not address
fine-grained sharing and support for heterogeneous collections of
Web-service objects.

Some projects have looked at improving the security of mashups
within the current browsers [28, 12]. Most of these provide protec-
tion mechanisms for sharing of resources within the browser, while
Menagerie’s protection mechanism provides controlled sharing of
objects within a Web service with a third-party application.

While Menagerie is closely related to these previous systems, it
is unique in its integration of: (1) global naming and fine-grained
protection for user-personal Web service objects, (2) transparent
access to those objects using standard applications, and (3) ex-
tended functions supporting needed Web operations, such as em-
bedded rendering.

7. CONCLUSIONS
The move from PC-centric to Web-based computing and data

storage poses new challenges for users and applications. This paper
described the organizational, sharing, and data-processing prob-
lems faced by users and creators of modern Web services. We
presented Menagerie, a software framework that supports uniform
naming, protection, and access for personal objects stored by Web
services. We designed and implemented a Menagerie prototype
and integrated a set of existing Web services: Gmail, Google Docs,
Flickr, YouTube and Yahoo!Mail. Using Menagerie, we built or-
ganization and sharing services for personal objects, including the

Menagerie Web Object Manager and the Menagerie Group Sharing
Service. Our experience with Menagerie and its applications un-
derscores the power of this approach and its potential for enabling
and simplifying the construction of new composite Web services.
Our measurements show that a Menagerie-like service interface can
provide performance commensurate with existing Web-object ac-
cess techniques.

8. ACKNOWLEDGMENTS
We thank Charlie Reis and Tanya Bragin for their feedback on

this work and paper. This research was supported in part by the
National Science Foundation under grants CNS-0132817, CNS-
0430477, and CNS-0614975, by the Torode Family Endowed Ca-
reer Development Professorship, by the Wissna-Slivka Chair, and
by gifts from Nortel Networks and Intel Corporation.

9. REFERENCES
[1] A.D. Alexandrov, M. Ibel, K.E. Schauser, and C.J. Scheiman. UFO:

A personal global file system based on user-level extensions to the
operating system. ACM TOCS, 16(3):207–233, 1998.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic
web. Scientific American, 2001.

[3] V. Berstis. Security and protection in the IBM System/38. In
Proceedings of the 7th ISCA, 1980.

[4] J.S. Chase, H.M. Levy, M.J. Feeley, and E.D. Lazowska. Sharing and
protection in a single-address-space operating system. ACM TOCS
Systems, 12(4), 1994.

[5] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web service definition language (WSDL). W3C, 2001.

[6] Dawson R. Engler and M. Frans Kaashoek. Exterminate all operating
system abstractions. In Proceedings of the 5th Workshop on Hot
Topics in Operating Systems (HotOS-V), Orcas Island, WA, May
1995.

[7] Facebook. http://www.facebook.com/, 2007.
[8] Roy T. Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, University of California, Irvine,
2000.

[9] National Laboratory for Applied Network Research. The Squid
Internet Object Cache. http://squid.nlanr.net.

[10] Google, Inc. iGoogle. http://google.com/ig, 2005.
[11] Google, Inc. OpenSocial.

http://code.google.com/apis/opensocial/, 2007.
[12] C. Jackson and H.J. Wang. Subspace: secure cross-domain

communication for web mashups. In WWW ’07, pages 611–620,
2007.

[13] Manish Rai Jain. FlickrFS.
http://manishrjain.googlepages.com/flickrfs,
2005.

[14] R. Jones. GmailFS.
http://richard.jones.name/google-hacks/
gmail-filesystem/gmail-filesystem.html, 2004.

[15] S.R. Kleiman. Vnodes: an architecture for multiple file system types
in Sun UNIX. In Summer USENIX Conference Proceedings, Atlanta,
GA, June 1986.

[16] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A world
wide web without walls. In Proceedings of HotNets-VI, Atlanta, GA,
November 2007.

[17] H.M. Levy. Capability-Based Computer Systems. Digital Press, 1984.
[18] Bharat Mediratta. Gallery: Your photos on Your Website.

http://gallery.menalto.com/, 2007.
[19] Microsoft Corporation. Microsoft Passport.

http://www.passport.com/, 2007.
[20] Picnik, Inc. http://www.picnik.com/, 2007.
[21] SecondBrain. SecondBrain: All your Internet Content.

http://www.secondbrain.com/, 2007.
[22] J.S. Shapiro, J.M. Smith, and D.J. Farber. EROS: a fast capability

system. In Proc. of the 17th ACM Symposium on Operating Systems
Principles, 1999.

[23] Miklos Szeredi. Filesystem in Userspace.
http://fuse.sourceforge.net/, 2007.

[24] A.S. Tanenbaum, S.J. Mullender, and R. van Renesse. Using sparse
capabilities in a distributed operating system. In Proceedings of the
6th ICDCS Conference, 1986.

[25] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P. Eastham,
and C. Yoshikawa. WebOS: Operating system services for wide area
applications. In Proceedings of HPDC ’98, July 1998.

[26] Amin Vahdat, Paul Eastham, and Thomas Anderson. WebFS: a
global cache coherent filesystem. Technical report, UC Berkeley,
December 1996.

[27] W3C. SOAP. http://www.w3.org/TR/soap/, 2004.
[28] H.J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and

communication abstractions for web browsers in MashupOS. In
Proceedings of 21st ACM Symposium on Operating Systems
Principles, October 2007.

[29] E. James Whitehead, Jr. and Yaron Y. Goland. WebDAV: A network
protocol for remote collaborative authoring on the web. In Proc. of
the European Conf. on Computer Supported Cooperative Work,
Denmark, 1999.

[30] D. Winer. XML-RPC Specification.
http://www.xmlrpc.com/spec, 1999.

[31] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack. HYDRA: The kernel of a multiprocessor operating
system. CACM, 17(6), 1974.

[32] Yahoo!, Inc. pipes.
http://pipes.yahoo.com/pipes/docs.

[33] Yahoo, Inc. Browser-Based Authentication (BBauth).
http://developer.yahoo.com/auth/, 2007.

http://www.facebook.com/
http://squid.nlanr.net
http://google.com/ig
http://code.google.com/apis/opensocial/
http://manishrjain.googlepages.com/flickrfs
http://richard.jones.name/google-hacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/google-hacks/gmail-filesystem/gmail-filesystem.html
http://gallery.menalto.com/
http://www.passport.com/
http://www.picnik.com/
http://www.secondbrain.com/
http://fuse.sourceforge.net/
http://www.w3.org/TR/soap/
http://www.xmlrpc.com/spec
http://pipes.yahoo.com/pipes/docs
http://developer.yahoo.com/auth/

	Introduction
	Motivation
	A Simple Scenario
	Challenges
	Requirements of a Solution

	The Menagerie Prototype
	Object Naming
	Protection
	The Object Content Access Interface
	Implementation
	The Menagerie File System

	Summary

	Menagerie Applications
	The Menagerie Web Object Manager
	The Menagerie Group Sharing Service
	MFS-based Applications
	Summary

	Evaluation
	Menagerie Overhead
	MFS Desktop Bridge Performance

	Related Work
	Conclusions
	Acknowledgments
	References

