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Abstract—Adversarial examples that fool machine learning
models, particularly deep neural networks, have been a topic
of intense research interest, with attacks and defenses being
developed in a tight back-and-forth. Most past defenses are
best effort and have been shown to be vulnerable to sophis-
ticated attacks. Recently a set of certified defenses have been
introduced, which provide guarantees of robustness to norm-
bounded attacks. However these defenses either do not scale
to large datasets or are limited in the types of models they
can support. This paper presents the first certified defense
that both scales to large networks and datasets (such as
Google’s Inception network for ImageNet) and applies broadly
to arbitrary model types. Our defense, called PixelDP, is based
on a novel connection between robustness against adversarial
examples and differential privacy, a cryptographically-inspired
privacy formalism, that provides a rigorous, generic, and
flexible foundation for defense.

I. Introduction
Deep neural networks (DNNs) perform exceptionally well

on many machine learning tasks, including safety- and
security-sensitive applications such as self-driving cars [5],
malware classification [48], face recognition [47], and criti-
cal infrastructure [71]. Robustness against malicious behav-
ior is important in many of these applications, yet in recent
years it has become clear that DNNs are vulnerable to a
broad range of attacks. Among these attacks – broadly sur-
veyed in [46] – are adversarial examples: the adversary finds
small perturbations to correctly classified inputs that cause a
DNN to produce an erroneous prediction, possibly of the ad-
versary’s choosing [56]. Adversarial examples pose serious
threats to security-critical applications. A classic example is
an adversary attaching a small, human-imperceptible sticker
onto a stop sign that causes a self-driving car to recognize
it as a yield sign. Adversarial examples have also been
demonstrated in domains such as reinforcement learning [32]
and generative models [31].

Since the initial demonstration of adversarial exam-
ples [56], numerous attacks and defenses have been pro-
posed, each building on one another. Initially, most de-
fenses used best-effort approaches and were broken soon
after introduction. Model distillation, proposed as a robust
defense in [45], was subsequently broken in [7]. Other
work [36] claimed that adversarial examples are unlikely to
fool machine learning (ML) models in the real-world, due
to the rotation and scaling introduced by even the slightest
camera movements. However, [3] demonstrated a new attack
strategy that is robust to rotation and scaling. While this

back-and-forth has advanced the state of the art, recently
the community has started to recognize that rigorous, theory-
backed, defensive approaches are required to put us off this
arms race.

Accordingly, a new set of certified defenses have emerged
over the past year, that provide rigorous guarantees of
robustness against norm-bounded attacks [12], [52], [65].
These works alter the learning methods to both optimize
for robustness against attack at training time and permit
provable robustness checks at inference time. At present,
these methods tend to be tied to internal network details,
such as the type of activation functions and the network
architecture. They struggle to generalize across different
types of DNNs and have only been evaluated on small
networks and datasets.

We propose a new and orthogonal approach to certified
robustness against adversarial examples that is broadly ap-
plicable, generic, and scalable. We observe for the first
time a connection between differential privacy (DP), a
cryptography-inspired formalism, and a definition of robust-
ness against norm-bounded adversarial examples in ML.
We leverage this connection to develop PixelDP, the first
certified defense we are aware of that both scales to large
networks and datasets (such as Google’s Inception net-
work trained on ImageNet) and can be adapted broadly
to arbitrary DNN architectures. Our approach can even
be incorporated with no structural changes in the target
network (e.g., through a separate auto-encoder as described
in Section III-B). We provide a brief overview of our
approach below along with the section references that detail
the corresponding parts.
§II establishes the DP-robustness connection formally (our

first contribution). To give the intuition, DP is a framework
for randomizing computations running on databases such
that a small change in the database (removing or altering
one row or a small set of rows) is guaranteed to result in
a bounded change in the distribution over the algorithm’s
outputs. Separately, robustness against adversarial examples
can be defined as ensuring that small changes in the input of
an ML predictor (such as changing a few pixels in an image
in the case of an l0-norm attack) will not result in drastic
changes to its predictions (such as changing its label from
a stop to a yield sign). Thus, if we think of a DNN’s inputs
(e.g., images) as databases in DP parlance, and individual
features (e.g., pixels) as rows in DP, we observe that random-
izing the outputs of a DNN’s prediction function to enforce



DP on a small number of pixels in an image guarantees
robustness of predictions against adversarial examples that
can change up to that number of pixels. The connection can
be expanded to standard attack norms, including l1, l2, and
l∞ norms.
§III describes PixelDP, the first certified defense against

norm-bounded adversarial examples based on differential
privacy (our second contribution). Incorporating DP into
the learning procedure to increase robustness to adversarial
examples requires is completely different and orthogonal to
using DP to preserve the privacy of the training set, the focus
of prior DP ML literature [40], [1], [9] (as § VI explains). A
PixelDP DNN includes in its architecture a DP noise layer
that randomizes the network’s computation, to enforce DP
bounds on how much the distribution over its predictions can
change with small, norm-bounded changes in the input. At
inference time, we leverage these DP bounds to implement a
certified robustness check for individual predictions. Passing
the check for a given input guarantees that no perturbation
exists up to a particular size that causes the network to
change its prediction. The robustness certificate can be used
to either act exclusively on robust predictions, or to lower-
bound the network’s accuracy under attack on a test set.
§IV presents the first experimental evaluation of a certi-

fied adversarial-examples defense for the Inception network
trained on the ImageNet dataset (our third contribution). We
additionally evaluate PixelDP on various network architec-
tures for four other datasets (CIFAR-10, CIFAR-100, SVHN,
MNIST), on which previous defenses – both best effort and
certified – are usually evaluated. Our results indicate that
PixelDP is (1) as effective at defending against attacks as
today’s state-of-the-art, best-effort defense [37] and (2) more
scalable and broadly applicable than a prior certified defense.

Our experience points to DP as a uniquely generic,
broadly applicable, and flexible foundation for certified de-
fense against norm-bounded adversarial examples (§V, §VI).
We credit these properties to the post-processing property
of DP, which lets us incorporate the certified defense in a
network-agnostic way.

II. DP-Robustness Connection
A. Adversarial ML Background

An ML model can be viewed as a function mapping inputs
– typically a vector of numerical feature values – to an
output (a label for multiclass classification and a real number
for regression). Focusing on multiclass classification, we
define a model as a function f : Rn → K that maps n-
dimensional inputs to a label in the set K = {1, . . . ,K}
of all possible labels. Such models typically map an input
x to a vector of scores y(x) = (y1(x), . . . , yK(x)), such
that yk(x) ∈ [0, 1] and

∑K
k=1 yk(x) = 1. These scores are

interpreted as a probability distribution over the labels, and
the model returns the label with highest probability, i.e.,
f(x) = arg maxk∈K yk(x). We denote the function that

maps input x to y as Q and call it the scoring function;
we denote the function that gives the ultimate prediction for
input x as f and call it the prediction procedure.
Adversarial Examples. Adversarial examples are a class
of attack against ML models, studied particularly on deep
neural networks for multiclass image classification. The
attacker constructs a small change to a given, fixed input,
that wildly changes the predicted output. Notationally, if the
input is x, we denote an adversarial version of that input by
x+α, where α is the change or perturbation introduced by
the attacker. When x is a vector of pixels (for images), then
xi is the i’th pixel in the image and αi is the change to the
i’th pixel.

It is natural to constrain the amount of change an attacker
is allowed to make to the input, and often this is measured by
the p-norm of the change, denoted by ‖α‖p. For 1 ≤ p <∞,
the p-norm of α is defined by ‖α‖p = (

∑n
i=1 |αi|p)1/p; for

p = ∞, it is ‖α‖∞ = maxi |αi|. Also commonly used is
the 0-norm (which is technically not a norm): ‖α‖0 = |{i :
αi 6= 0}|. A small 0-norm attack is permitted to arbitrarily
change a few entries of the input; for example, an attack on
the image recognition system for self-driving cars based on
putting a sticker in the field of vision is such an attack [19].
Small p-norm attacks for larger values of p (including
p = ∞) require the changes to the pixels to be small in
an aggregate sense, but the changes may be spread out over
many or all features. A change in the lighting condition of an
image may correspond to such an attack [34], [50]. The latter
attacks are generally considered more powerful, as they can
easily remain invisible to human observers. Other attacks
that are not amenable to norm bounding exist [67], [54],
[66], but this paper deals exclusively with norm-bounded
attacks.

Let Bp(r) := {α ∈ Rn : ‖α‖p ≤ r} be the p-norm
ball of radius r. For a given classification model, f , and a
fixed input, x ∈ Rn, an attacker is able to craft a successful
adversarial example of size L for a given p-norm if they
find α ∈ Bp(L) such that f(x + α) 6= f(x). The attacker
thus tries to find a small change to x that will change the
predicted label.
Robustness Definition. Intuitively, a predictive model may
be regarded as robust to adversarial examples if its output is
insensitive to small changes to any plausible input that may
be encountered in deployment. To formalize this notion, we
must first establish what qualifies as a plausible input. This
is difficult: the adversarial examples literature has not settled
on such a definition. Instead, model robustness is typically
assessed on inputs from a test set that are not used in model
training – similar to how accuracy is assessed on a test set
and not a property on all plausible inputs. We adopt this
view of robustness.

Next, given an input, we must establish a definition for
insensitivity to small changes to the input. We say a model
f is insensitive, or robust, to attacks of p-norm L on a given



input x if f(x) = f(x + α) for all α ∈ Bp(L). If f is a
multiclass classification model based on label scores (as in
§II-A), this is equivalent to:

∀α ∈ Bp(L) � yk(x + α) > max
i:i6=k

yi(x + α), (1)

where k := f(x). A small change in the input does not alter
the scores so much as to change the predicted label.

B. DP Background

DP is concerned with whether the output of a computation
over a database can reveal information about individual
records in the database. To prevent such information leakage,
randomness is introduced into the computation to hide
details of individual records.

A randomized algorithm A that takes as input a database
d and outputs a value in a space O is said to satisfy (ε, δ)-
DP with respect to a metric ρ over databases if, for any
databases d and d′ with ρ(d, d′) ≤ 1, and for any subset of
possible outputs S ⊆ O, we have

P (A(d) ∈ S) ≤ eεP (A(d′) ∈ S) + δ. (2)

Here, ε > 0 and δ ∈ [0, 1] are parameters that quantify
the strength of the privacy guarantee. In the standard DP
definition, the metric ρ is the Hamming metric, which simply
counts the number of entries that differ in the two databases.
For small ε and δ, the standard (ε, δ)-DP guarantee implies
that changing a single entry in the database cannot change
the output distribution very much. DP also applies to general
metrics ρ [8], including p-norms relevant to norm-based
adversarial examples.

Our approach relies on two key properties of DP. First is
the well-known post-processing property: any computation
applied to the output of an (ε, δ)-DP algorithm remains
(ε, δ)-DP. Second is the expected output stability property,
a rather obvious but not previously enunciated property that
we prove in Lemma 1: the expected value of an (ε, δ)-
DP algorithm with bounded output is not sensitive to small
changes in the input.

Lemma 1. (Expected Output Stability Bound) Suppose
a randomized function A, with bounded output A(x) ∈
[0, b], b ∈ R+, satisfies (ε, δ)-DP. Then the expected value
of its output meets the following property:

∀α ∈ Bp(1) � E(A(x)) ≤ eεE(A(x+ α)) + bδ.

The expectation is taken over the randomness in A.

Proof: Consider any α ∈ Bp(1), and let x′ := x + α.
We write the expected output as:

E(A(x)) =

∫ b

0

P (A(x) > t)dt.

We next apply Equation (2) from the (ε, δ)-DP property:

E(A(x)) ≤ eε
(∫ b

0

P (A(x′) > t)dt
)

+

∫ b

0

δdt

= eεE(A(x′)) +

∫ b

0

δdt.

Since δ is a constant,
∫ b

0
δdt = bδ.

C. DP-Robustness Connection
The intuition behind using DP to provide robustness to

adversarial examples is to create a DP scoring function such
that, given an input example, the predictions are DP with
regards to the features of the input (e.g. the pixels of an
image). In this setting, we can derive stability bounds for
the expected output of the DP function using Lemma 1.
The bounds, combined with Equation (1), give a rigorous
condition (or certification) for robustness to adversarial
examples.

Formally, regard the feature values (e.g., pixels) of an
input x as the records in a database, and consider a ran-
domized scoring function A that, on input x, outputs scores
(y1(x), . . . , yK(x)) (with yk(x) ∈ [0, 1] and

∑K
k=1 yk(x) =

1). We say that A is an (ε, δ)-pixel-level differentially private
(or (ε, δ)-PixelDP) function if it satisfies (ε, δ)-DP (for a
given metric). This is formally equivalent to the standard
definition of DP, but we use this terminology to emphasize
the context in which we apply the definition, which is
fundamentally different than the context in which DP is
traditionally applied in ML (see §VI for distinction).

Lemma 1 directly implies bounds on the expected out-
come on an (ε, δ)-PixelDP scoring function:

Corollary 1. Suppose a randomized function A satisfies
(ε, δ)-PixelDP with respect to a p-norm metric, and where
A(x) = (y1(x), . . . , yK(x)), yk(x) ∈ [0, 1]:

∀k,∀α ∈ Bp(1) � E(yk(x)) ≤ eεE(yk(x+ α)) + δ. (3)

Proof: For any k apply Lemma 1 with b = 1.
Our approach is to transform a model’s scoring function

into a randomized (ε, δ)-PixelDP scoring function, A(x),
and then have the model’s prediction procedure, f , use
A’s expected output over the DP noise, E(A(x)), as the
label probability vector from which to pick the arg max.
I.e., f(x) = arg maxk∈K E(Ak(x)). We prove that a model
constructed this way allows the following robustness certi-
fication to adversarial examples:

Proposition 1. (Robustness Condition) Suppose A satisfies
(ε, δ)-PixelDP with respect to a p-norm metric. For any
input x, if for some k ∈ K,

E(Ak(x)) > e2ε max
i:i 6=k

E(Ai(x)) + (1 + eε)δ, (4)

then the multiclass classification model based on label
probability vector y(x) = (E(A1(x)), . . . ,E(AK(x))) is



(a) PixelDP DNN Architecture (b) Robustness Test Example

Fig. 1: Architecture. (a) In blue, the original DNN. In red, the noise layer that provides the (ε, δ)-DP guarantees. The noise can be added to the inputs
or any of the following layers, but the distribution is rescaled by the sensitivity ∆p,q of the computation performed by each layer before the noise layer.
The DNN is trained with the original loss and optimizer (e.g., Momentum stochastic gradient descent). Predictions repeatedly call the (ε, δ)-DP DNN
to measure its empirical expectation over the scores. (b) After adding the bounds for the measurement error between the empirical and true expectation
(green) and the stability bounds from Lemma 1 for a given attack size Lattack (red), the prediction is certified robust to this attack size if the lower bound
of the arg max label does not overlap with the upper bound of any other labels.

robust to attacks α of size ‖α‖p ≤ 1 on input x.

Proof: Consider any α ∈ Bp(1), and let x′ := x + α.
From Equation (3), we have:

E(Ak(x)) ≤ eεE(Ak(x′)) + δ, (a)

E(Ai(x
′)) ≤ eεE(Ai(x)) + δ, i 6= k. (b)

Equation (a) gives a lower-bound on E(Ak(x′)); Equation
(b) gives an upper-bound on maxi 6=k E(Ai(x

′)). The hy-
pothesis in the proposition statement (Equation (4)) implies
that the lower-bound of the expected score for label k is
strictly higher than the upper-bound for the expected score
for any other label, which in turn implies the condition from
Equation (1) for robustness at x. To spell it out:

E(Ak(x′))
Eq(a)

≥ E(Ak(x))− δ
eε

Eq(4)

>
e2ε maxi:i6=k E(Ai(x)) + (1 + eε)δ − δ

eε

= eε max
i:i 6=k

E(Ai(x)) + δ

Eq(b)

≥ max
i:i 6=k

E(Ai(x
′))

=⇒ E(Ak(x′)) > max
i:i 6=k

E(Ai(x+ α)) ∀α ∈ Bp(1),

the very definition of robustness at x (Equation (1)).
The preceding certification test is exact regardless of the

value of the δ parameter of differential privacy: there is no
failure probability in this test. The test applies only to attacks
of p-norm size of 1, however all preceding results generalize
to attacks of p-norm size L, i.e., when ‖α‖p ≤ L, by
applying group privacy [18]. The next section shows how to
apply group privacy (§III-B) and generalize the certification
test to make it practical (§III-D).

III. PixelDP Certified Defense
A. Architecture

PixelDP is a certified defense against p-norm bounded
adversarial example attacks built on the preceding DP-

robustness connection. Fig. 1(a) shows an example PixelDP
DNN architecture for multi-class image classification. The
original architecture is shown in blue; the changes intro-
duced to make it PixelDP are shown in red. Denote Q the
original DNN’s scoring function; it is a deterministic map
from images x to a probability distribution over the K labels
Q(x) = (y1(x), . . . , yK(x)). The vulnerability to adversarial
examples stems from the unbounded sensitivity of Q with
respect to p-norm changes in the input. Making the DNN
(ε, δ)-PixelDP involves adding calibrated noise to turn Q
into an (ε, δ)-DP randomized function AQ; the expected
output of that function will have bounded sensitivity to p-
norm changes in the input. We achieve this by introducing
a noise layer (shown in red in Fig. 1(a)) that adds zero-
mean noise to the output of the layer preceding it (layer1 in
Fig. 1(a)). The noise is drawn from a Laplace or Gaussian
distribution and its standard deviation is proportional to: (1)
L, the p-norm attack bound for which we are constructing
the network and (2) ∆, the sensitivity of the pre-noise
computation (the grey box in Fig. 1(a)) with respect to p-
norm input changes.

Training an (ε, δ)-PixelDP network is similar to training
the original network: we use the original loss and optimizer,
such as stochastic gradient descent. The major difference
is that we alter the pre-noise computation to constrain its
sensitivity with regards to p-norm input changes. Denote
Q(x) = h(g(x)), where g is the pre-noise computation and
h is the subsequent computation that produces Q(x) in the
original network. We leverage known techniques, reviewed
in §III-C, to transform g into another function, g̃, that has a
fixed sensitivity (∆) to p-norm input changes. We then add
the noise layer to the output of g̃, with a standard deviation
scaled by ∆ and L to ensure (ε, δ)-PixelDP for p-norm
changes of size L. Denote the resulting scoring function of
the PixelDP network: AQ(x) = h(g̃(x)+noise(∆, L, ε, δ)),
where noise(.) is the function implementing the Laplace/-
Gaussian draw. Assuming that the noise layer is placed



such that h only processes the DP output of g̃(x) without
accessing x again (i.e., no skip layers exist from pre-noise to
post-noise computation), the post-processing property of DP
ensures that AQ(x) also satisfies (ε, δ)-PixelDP for p-norm
changes of size L.

Prediction on the (ε, δ)-PixelDP scoring function, AQ(x),
affords the robustness certification in Proposition 1 if the
prediction procedure uses the expected scores, E(AQ(x)),
to select the winning label for any input x. Unfortunately,
due to the potentially complex nature of the post-noise
computation, h, we cannot compute this output expectation
analytically. We therefore resort to Monte Carlo methods to
estimate it at prediction time and develop an approximate
version of the robustness certification in Proposition 1 that
uses standard techniques from probability theory to account
for the estimation error (§III-D). Specifically, given input
x, PixelDP’s prediction procedure invokes AQ(x) multiple
times with new draws of the noise layer. It then averages
the results for each label, thereby computing an estima-
tion Ê(AQ(x)) of the expected score E(AQ(x)). It then
computes an η-confidence interval for Ê(AQ(x)) that holds
with probability η. Finally, it integrates this confidence
interval into the stability bound for the expectation of a
DP computation (Lemma 1) to obtain η-confidence upper
and lower bounds on the change an adversary can make to
the average score of any label with a p-norm input change
of size up to L. Fig. 1(b) illustrates the upper and lower
bounds applied to the average score of each label by the
PixelDP prediction procedure. If the lower bound for the
label with the top average score is strictly greater than the
upper bound for every other label, then, with probability η,
the PixelDP network’s prediction for input x is robust to
arbitrary attacks of p-norm size L. The failure probability
of this robustness certification, 1−η, can be made arbitrarily
small by increasing the number of invocations of AQ(x).

One can use PixelDP’s certification check in two ways:
(1) one can decide only to actuate on predictions that are
deemed robust to attacks of a particular size; or (2) one can
compute, on a test set, a lower bound of a PixelDP network’s
accuracy under p-norm bounded attack, independent of how
the attack is implemented. This bound, called certified ac-
curacy, will hold no matter how effective future generations
of the attack are.

The remainder of this section details the noise layer,
training, and certified prediction procedures. To simplify
notation, we will henceforth use A instead of AQ.

B. DP Noise Layer
The noise layer enforces (ε, δ)-PixelDP by inserting noise

inside the DNN using one of two well-known DP mecha-
nisms: the Laplacian and Gaussian mechanisms. Both rely
upon the sensitivity of the pre-noise layers (function g). The
sensitivity of a function g is defined as the maximum change
in output that can be produced by a change in the input,

given some distance metrics for the input and output (p-
norm and q-norm, respectively):

∆p,q = ∆g
p,q = max

x,x′:x 6=x′

‖g(x)− g(x′)‖q
‖x− x′‖p

.

Assuming we can compute the sensitivity of the pre-
noise layers (addressed shortly), the noise layer leverages
the Laplace and Gaussian mechanisms as follows. On every
invocation of the network on an input x (whether for training
or prediction) the noise layer computes g(x) + Z, where
the coordinates Z = (Z1, . . . , Zm) are independent random
variables from a noise distribution defined by the function
noise(∆, L, ε, δ).
• Laplacian mechanism: noise(∆, L, ε, δ) uses the

Laplace distribution with mean zero and standard de-
viation σ =

√
2∆p,1L/ε; it gives (ε, 0)-DP.

• Gaussian mechanism: noise(∆, L, ε, δ) uses the Gaus-
sian distribution with mean zero and standard deviation
σ =

√
2 ln(1.25

δ )∆p,2L/ε; it gives (ε, δ)-DP for ε ≤ 1.

Here, L denotes the p-norm size of the attack against
which the PixelDP network provides (ε, δ)-DP; we call it
the construction attack bound. The noise formulas show
that for a fixed noise standard deviation σ, the guarantee
degrades gracefully: attacks twice as big halve the ε in the
DP guarantee (L ← 2L ⇒ ε ← 2ε). This property is often
referred as group privacy in the DP literature [18].

Computing the sensitivity of the pre-noise function g
depends on where we choose to place the noise layer in the
DNN. Because the post-processing property of DP carries
the (ε, δ)-PixelDP guarantee from the noise layer through
the end of the network, a DNN designer has great flexibility
in placing the noise layer anywhere in the DNN, as long as
no skip connection exists from pre-noise to post-noise layers.
We discuss here several options for noise layer placement
and how to compute sensitivity for each. Our methods are
not closely tied to particular network architectures and can
therefore be applied on a wide variety of networks.
Option 1: Noise in the Image. The most straightforward
placement of the noise layer is right after the input layer,
which is equivalent to adding noise to individual pixels of
the image. This case makes sensitivity analysis trivial: g is
the identity function, ∆1,1 = 1, and ∆2,2 = 1.
Option 2: Noise after First Layer. Another option is to
place the noise after the first hidden layer, which is usually
simple and standard for many DNNs. For example, in image
classification, networks often start with a convolution layer.
In other cases, DNNs start with fully connected layer. These
linear initial layers can be analyzed and their sensitivity
computed as follows.

For linear layers, which consist of a linear operator with
matrix form W ∈ Rm,n, the sensitivity is the matrix norm,
defined as: ‖W‖p,q = supx:‖x‖p≤1 ‖Wx‖q . Indeed, the
definition and linearity of W directly imply that ‖Wx‖q

‖x‖p ≤



‖W‖p,q , which means that: ∆p,q = ‖W‖p,q . We use the
following matrix norms [64]: ‖W‖1,1 is the maximum 1-
norm of W ’s columns; ‖W‖1,2 is the maximum 2-norm of
W ’s columns; and ‖W‖2,2 is the maximum singular value
of W . For ∞-norm attacks, we need to bound ‖W‖∞,1 or
‖W‖∞,2, as our DP mechanisms require q ∈ {1, 2}. How-
ever, tight bounds are computationally hard, so we currently
use the following bounds:

√
n‖W‖2,2 or

√
m‖W‖∞,∞

where ‖W‖∞,∞ is the maximum 1-norm of W ’s rows.
While these bounds are suboptimal and lead to results that
are not as good as for 1-norm or 2-norm attacks, they allow
us to include ∞-norm attacks in our frameworks. We leave
the study of better approximate bounds to future work.

For a convolution layer, which is linear but usually not
expressed in matrix form, we reshape the input (e.g. the
image) as an Rndin vector, where n is the input size (e.g.
number of pixels) and din the number of input channels
(e.g. 3 for the RGB channels of an image). We write the
convolution as an Rndout×ndin matrix where each column
has all filter maps corresponding to a given input channel,
and zero values. This way, a “column” of a convolution
consists of all coefficients in the kernel that correspond to a
single input channel. Reshaping the input does not change
sensitivity.
Option 3: Noise Deeper in the Network. One can con-
sider adding noise later in the network using the fact that
when applying two functions in a row f1(f2(x)) we have:
∆

(f1◦f2)
p,q ≤ ∆

(f2)
p,r ∆

(f1)
r,q . For instance, ReLU has a sensitivity

of 1 for p, q ∈ {1, 2,∞}, hence a linear layer followed
by a ReLU has the same bound on the sensitivity as the
linear layer alone. However, we find that this approach
for sensitivity analysis is difficult to generalize. Combining
bounds in this way leads to looser and looser approxima-
tions. Moreover, layers such as batch normalization [28],
which are popular in image classification networks, do not
appear amenable to such bounds (indeed, they are assumed
away by some previous defenses [12]). Thus, our general
recommendation is to add the DP noise layer early in the
network – where bounding the sensitivity is easy – and
taking advantage of DP’s post-processing property to carry
the sensitivity bound through the end of the network.
Option 4: Noise in Auto-encoder. Pushing this reasoning
further, we uncover an interesting placement possibility that
underscores the broad applicability and flexibility of our
approach: adding noise “before” the DNN in a separately
trained auto-encoder. An auto-encoder is a special form of
DNN trained to predict its own input, essentially learning the
identity function f(x) = x. Auto-encoders are typically used
to de-noise inputs [60], and are thus a good fit for PixelDP.
Given an image dataset, we can train a (ε, δ)-PixelDP auto-
encoder using the previous noise layer options. We stack it
before the predictive DNN doing the classification and fine-
tune the predictive DNN by running a few training steps
on the combined auto-encoder and DNN. Thanks to the

decidedly useful post-processing property of DP, the stacked
DNN and auto-encoder are (ε, δ)-PixelDP.

This approach has two advantages. First, the auto-encoder
can be developed independently of the DNN, separating the
concerns of learning a good PixelDP model and a good
predictive DNN. Second, PixelDP auto-encoders are much
smaller than predictive DNNs, and are thus much faster to
train. We leverage this property to train the first certified
model for the large ImageNet dataset, using an auto-encoder
and the pre-trained Inception-v3 model, a substantial relief
in terms of experimental work (§IV-A).
C. Training Procedure

The soundness of PixelDP’s certifications rely only on
enforcing DP at prediction time. Theoretically, one could
remove the noise layer during training. However, doing so
results in near-zero certified accuracy in our experience.
Unfortunately, training with noise anywhere except in the
image itself raises a new challenge: left unchecked the
training procedure will scale up the sensitivity of the pre-
noise layers, voiding the DP guarantees.

To avoid this, we alter the pre-noise computation to keep
its sensitivity constant (e.g. ∆p,q ≤ 1) during training. The
specific technique we use depends on the type of sensitivity
we need to bound, i.e. on the values of p and q. For ∆1,1,
∆1,2, or ∆∞,∞, we normalize the columns, or rows, of
linear layers and use the regular optimization process with
fixed noise variance. For ∆2,2, we run the projection step
described in [12] after each gradient step from the stochastic
gradient descent (SGD). This makes the pre-noise layers
Parseval tight frames, enforcing ∆2,2 = 1. For the pre-noise
layers, we thus alternate between an SGD step with fixed
noise variance and a projection step. Subsequent layers from
the original DNN are left unchanged.

It is important to note that during training, we optimize
for a single draw of noise to predict the true label for a
training example x. We estimate E(A(x)) using multiple
draws of noise only at prediction time. We can interpret
this as pushing the DNN to increase the margin between
the expected score for the true label versus others. Recall
from Equation (4) that the bounds on predicted outputs give
robustness only when the true label has a large enough
margin compared to other labels. By pushing the DNN to
give high scores to the true label k at points around x
likely under the noise distribution, we increase E(Ak(x))
and decrease E(Ai 6=k(x)).
D. Certified Prediction Procedure

For a given input x, the prediction procedure in a tra-
ditional DNN chooses the arg max label based on the
score vector obtained from a single execution of the DNN’s
deterministic scoring function, Q(x). In a PixelDP network,
the prediction procedure differs in two ways. First, it chooses
the arg max label based on a Monte Carlo estimation
of the expected value of the randomized DNN’s scoring



function, Ê(A(x)). This estimation is obtained by invoking
A(x) multiple times with independent draws in the noise
layer. Denote ak,n(x) the nth draw from the distribution
of the randomized function A on the kth label, given x
(so ak,n(x) ∼ Ak(x)). In Lemma 1 we replace E(Ak(x))
with Ê(Ak(x)) = 1

n

∑
n ak,n(x), where n is the number of

invocations of A(x). We compute η-confidence error bounds
to account for the estimation error in our robustness bounds,
treating each label’s score as a random variable in [0, 1].
We use Hoeffding’s inequality [25] or Empirical Bernstein
bounds [39] to bound the error in Ê(A(x)). We then apply
a union bound so that the bounds for each label are all
valid together. For instance, using Hoeffding’s inequality,
with probability η, Êlb(A(x)) , Ê(A(x)) −

√
1
2n

ln( 2k
1−η ) ≤

E(A(x)) ≤ Ê(A(x)) +
√

1
2n

ln( 2k
1−η ) , Êub(A(x)).

Second, PixelDP returns not only the prediction for x
(arg max(Ê(A(x)))) but also a robustness size certificate
for that prediction. To compute the certificate, we extend
Proposition 1 to account for the measurement error:

Proposition 2. (Generalized Robustness Condition) Sup-
pose A satisfies (ε, δ)-PixelDP with respect to changes of
size L in p-norm metric. Using the notation from Propo-
sition 1 further let Êub(Ai(x)) and Êlb(Ai(x)) be the η-
confidence upper and lower bound, respectively, for the
Monte Carlo estimate Ê(Ai(x)). For any input x, if for some
k ∈ K,

Êlb(Ak(x)) > e2ε max
i:i 6=k

Êub(Ai(x)) + (1 + eε)δ,

then the multiclass classification model based on label
probabilities (Ê(A1(x)), . . . , Ê(AK(x))) is robust to attacks
of p-norm L on input x with probability ≥ η.

The proof is similar to the one for Proposition 1 and is
detailed in Appendix A. Note that the DP bounds are not
probabilistic even for δ > 0; the failure probability 1 −
η comes from the Monte Carlo estimate and can be made
arbitrarily small with more invocations of A(x).

Thus far, we have described PixelDP certificates as binary
with respect to a fixed attack bound, L: we either meet
or do not meet a robustness check for L. In fact, our
formalism allows for a more nuanced certificate, which gives
the maximum attack size Lmax (measured in p-norm) against
which the prediction on input x is guaranteed to be robust:
no attack within this size from x will be able to change
the highest probability. Lmax can differ for different inputs.
We compute the robustness size certificate for input x as
follows. Recall from III-B that the DP mechanisms have a
noise standard deviation σ that grows in ∆p,qL

ε . For a given
σ used at prediction time, we solve for the maximum L for
which the robustness condition in Proposition 2 checks out:

Lmax = maxL∈R+ L such that
Êlb(Ak(x)) > e2εÊub(Ai:i 6=k(x)) + (1 + eε)δ AND either
• σ = ∆p,1L/ε and δ = 0 (for Laplace) OR
• σ =

√
2 ln(1.25/δ)∆p,2L/ε and ε ≤ 1 (for Gaussian).

The prediction on x is robust to attacks up to Lmax, so
we award a robustness size certificate of Lmax for x.

We envision two ways of using robustness size certifi-
cations. First, when it makes sense to only take actions
on the subset of robust predictions (e.g., a human can
intervene for the rest), an application can use PixelDP’s
certified robustness on each prediction. Second, when all
points must be classified, PixelDP gives a lower bound on
the accuracy under attack. Like in regular ML, the testing
set is used as a proxy for the accuracy on new examples.
We can certify the minimum accuracy under attacks up to
a threshold size T, that we call the prediction robustness
threshold. T is an inference-time parameter that can differ
from the construction attack bound parameter, L, that is
used to configure the standard deviation of the DP noise. In
this setting the certification is computed only on the testing
set, and is not required for each prediction. We only need
the highest probability label, which requires fewer noise
draws. §IV-E shows that in practice a few hundred draws are
sufficient to retain a large fraction of the certified predictions,
while a few dozen are needed for simple predictions.

IV. Evaluation
We evaluate PixelDP by answering four key questions:

Q1: How does DP noise affect model accuracy?
Q2: What accuracy can PixelDP certify?
Q3: What is PixelDP’s accuracy under attack and how does

it compare to that of other best-effort and certified
defenses?

Q4: What is PixelDP’s computational overhead?
We answer these questions by evaluating PixelDP on five
standard image classification datasets and networks – both
large and small – and comparing it with one prior certi-
fied defense [65] and one best-effort defense [37]. §IV-A
describes the datasets, prior defenses, and our evaluation
methodology; subsequent sections address each question in
turn.

Evaluation highlights: PixelDP provides meaningful certi-
fied robustness bounds for reasonable degradation in model
accuracy on all datasets and DNNs. To the best of our
knowledge, these include the first certified bounds for large,
complex datasets/networks such as the Inception network
on ImageNet and Residual Networks on CIFAR-10. There,
PixelDP gives 60% certified accuracy for 2-norm attacks up
to 0.1 at the cost of 8.5 and 9.2 percentage-point accuracy
degradation respectively. Comparing PixelDP to the prior
certified defense on smaller datasets, PixelDP models give
higher accuracy on clean examples (e.g., 92.9% vs. 79.6%
accuracy SVHN dataset), and higher robustness to 2-norm
attacks (e.g., 55% vs. 17% accuracy on SVHN for 2-norm



attacks of 0.5), thanks to the ability to scale to larger models.
Comparing PixelDP to the best-effort defense on larger
models and datasets, PixelDP matches its accuracy (e.g.,
87% for PixelDP vs. 87.3% on CIFAR-10) and robustness
to 2-norm bounded attacks.
A. Methodology
Datasets. We evaluate PixelDP on image classification tasks
from five pubic datasets listed in Table I. The datasets are
listed in descending order of size and complexity for classifi-
cation tasks. MNIST [69] consists of greyscale handwritten
digits and is the easiest to classify. SVHN [44] contains
small, real-world digit images cropped from Google Street
View photos of house numbers. CIFAR-10 and CIFAR-
100 [33] consist of small color images that are each centered
on one object of one of 10 or 100 classes, respectively.
ImageNet [13] is a large, production-scale image dataset
with over 1 million images spread across 1,000 classes.
Models: Baselines and PixelDP. We use existing DNN
architectures to train a high-performing baseline model for
each dataset. Table I shows the accuracy of the baseline
models. We then make each of these networks PixelDP
with regards to 1-norm and 2-norm bounded attacks. We
also did rudimentary evaluation of∞-norm bounded attacks,
shown in Appendix D. While the PixelDP formalism can
support∞-norm attacks, our results show that tighter bounds
are needed to achieve a practical defense. We leave the
development and evaluation of these bounds for future work.

Table II shows the PixelDP configurations we used for
the 1-norm and 2-norm defenses. The code is available
at https://github.com/columbia/pixeldp. Since most of this
section focuses on models with 2-norm attack bounds, we
detail only those configurations here.

ImageNet: We use as baseline a pre-trained version of
Inception-v3 [55] available in Tensorflow [22]. To make
it PixelDP, we use the autoencoder approach from §III-B,
which does not require a full retraining of Inception and was
instrumental in our support of ImageNet. The encoder has
three convolutional layers and tied encoder/decoder weights.
The convolution kernels are 10× 10× 32, 8× 8× 32, and
5×5×64, with stride 2. We make the autoencoder PixelDP
by adding the DP noise after the first convolution. We then
stack the baseline Inception-v3 on the PixelDP autoencoder
and fine-tune it for 20k steps, keeping the autoencoder
weights constant.

CIFAR-10, CIFAR-100, SVHN: We use the same base-
line architecture, a state-of-the-art Residual Network
(ResNet) [70]. Specifically we use the Tensorflow implemen-
tation of a 28-10 wide ResNet [57], with the default param-
eters. To make it PixelDP, we slightly alter the architecture
to remove the image standardization step. This step makes
sensitivity input dependent, which is harder to deal with in
PixelDP. Interestingly, removing this step also increases the
baseline’s own accuracy for all three datasets. In this section,
we therefore report the accuracy of the changed networks as

baselines.
MNIST: We train a Convolutional Neural Network (CNN)

with two 5 × 5 convolutions (stride 2, 32 and 64 filters)
followed by a 1024 nodes fully connected layer.
Evaluation Metrics. We use two accuracy metrics to evalu-
ate PixelDP models: conventional accuracy and certified ac-
curacy. Conventional accuracy (or simply accuracy) denotes
the fraction of a testing set on which a model is correct; it
is the standard accuracy metric used to evaluate any DNN,
defended or not. Certified accuracy denotes the fraction
of the testing set on which a certified model’s predictions
are both correct and certified robust for a given prediction
robustness threshold; it has become a standard metric to
evaluate models trained with certified defenses [65], [52],
[16]. We also use precision on certified examples, which
measures the number of correct predictions exclusively on
examples that are certified robust for a given prediction
robustness threshold. Formally, the metrics are defined as
follows:

1) Conventional accuracy
∑n

i=1 isCorrect(xi)

n , where n is
the testing set size and isCorrect(xi) denotes a func-
tion returning 1 if the prediction on test sample xi
returns the correct label, and 0 otherwise.

2) Certified accuracy∑n
i=1(isCorrect(xi)&robustSize(scores,ε,δ,L)≥T )

n , where
robustSize(scores, ε, δ, L) returns the certified
robustness size, which is then compared to the
prediction robustness threshold T.

3) Precision on certified examples∑n
i=1(isCorrect(xi)&robustSize(pi,ε,δ,L)≥T ))∑n

i=1 robustSize(pi,ε,δ,L)≥T ) .

For T = 0 all predictions are robust, so certified accuracy
is equivalent to conventional accuracy. Each time we report
L or T , we use a [0, 1] pixel range.
Attack Methodology. Certified accuracy – as provided by
PixelDP and other certified defense – constitutes a guar-
anteed lower-bound on accuracy under any norm-bounded
attack. However, the accuracy obtained in practice when
faced with a specific attack can be much better. How much
better depends on the attack, which we evaluate in two
steps. We first perform an attack on 1,000 randomly picked
samples (as is customary in defense evaluation [37]) from
the testing set. We then measure conventional accuracy on
the attacked test examples.

For our evaluation, we use the state-of-the art attack from
Carlini and Wagner [7], that we run for 9 iterations of binary
search, 100 gradient steps without early stopping (which
we empirically validated to be sufficient), and learning rate
0.01. We also adapt the attack to our specific defense
following [2]: since PixelDP adds noise to the DNN, attacks
based on optimization may fail due to the high variance
of gradients, which would not be a sign of the absence of
adversarial examples, but merely of them being harder to
find. We address this concern by averaging the gradients over



Dataset Image
size

Training
set size

Testing
set size

Target
labels

Classifier
architecture

Baseline
accuracy

ImageNet [13] 299x299x3 1.4M 50K 1000 Inception V3 77.5%
CIFAR-100 [33] 32x32x3 50K 10K 100 ResNet 78.6%
CIFAR-10 [33] 32x32x3 50K 10K 10 ResNet 95.5%
SVHN [44] 32x32x3 73K 26K 10 ResNet 96.3%
MNIST [69] 28x28x1 60K 10K 10 CNN 99.2%

Table I: Evaluation datasets and baseline models. Last column shows the accuracy
of the baseline, undefended models. The datasets are sorted based on descending
order of scale or complexity.

p-norm DP Noise Sensitivity
used mechanism location approach

1-norm Laplace 1st conv. ∆1,1 = 1
1-norm Gaussian 1st conv. ∆1,2 = 1
2-norm Gaussian 1st conv. ∆2,2 ≤ 1
1-norm Laplace Autoencoder ∆1,1 = 1
2-norm Gaussian Autoencoder ∆2,2 ≤ 1

Table II: Noise layers in PixelDP DNNs. For each
DNN, we implement defenses for different attack
bound norms and DP mechanisms.

Dataset Baseline L = 0.03 L = 0.1 L = 0.3 L = 1.0
ImageNet 77.5% – 68.3% 57.7% 37.7%
CIFAR-10 95.5% 93.3% 87.0% 70.9% 44.3%
CIFAR-100 78.6% 73.4% 62.4% 44.3% 22.1%

SVHN 96.3% 96.1% 93.1% 79.6% 28.2%
MNIST 99.2% 99.1% 99.1% 98.2% 11%

Table III: Impact of PixelDP noise on conventional accuracy. For
each DNN, we show different levels of construction attack size L.
Conventional accuracy degrades with noise level.

20 noise draws at each gradient step. Appendix §C contains
more details about the attack, including sanity checks and
another attack we ran similar to the one used in [37].
Prior Defenses for Comparison. We use two state-of-art
defenses as comparisons. First, we use the empirical defense
model provided by the Madry Lab for CIFAR-10 [38]. This
model is developed in the context of∞-norm attacks. It uses
an adversarial training strategy to approximately minimize
the worst case error under malicious samples [37]. While
inspired by robust optmization theory, this methodology
is best effort (see §VI) and supports no formal notion of
robustness for individual predictions, as we do in PixelDP.
However, the Madry model performs better under the latest
attacks than other best-effort defenses (it is in fact the only
one not yet broken) [2], and represents a good comparison
point.

Second, we compare with another approach for certified
robustness against ∞-norm attacks [65], based on robust
optimization. This method does not yet scale to the largest
datasets (e.g. ImageNet), or the more complex DNNs (e.g.
ResNet, Inception) both for computational reasons and be-
cause not all necessary layers are yet supported (e.g. Batch-
Norm). We thus use their largest released model/dataset,
namely a CNN with two convolutions and a 100 nodes fully
connected layer for the SVHN dataset, and compare their
robustness guarantees with our own networks’ robustness
guarantees. We call this SVHN CNN model RobustOpt.

B. Impact of Noise (Q1)
Q1: How does DP noise affect the conventional accuracy

of our models? To answer, for each dataset we train up to
four (1.0, 0.05)-PixelDP DNN, for construction attack bound
L ∈ {0.03, 0.1, 0.3, 1}. Higher values of L correspond to
robustness against larger attacks and larger noise standard
deviation σ.

Table III shows the conventional accuracy of these net-

works and highlights two parts of an answer to Q1. First, at
fairly low but meaningful construction attack bound (e.g.,
L = 0.1), all of our DNNs exhibit reasonable accuracy
loss – even on ImageNet, a dataset on which no guarantees
have been made to date! ImageNet: The Inception-v3 model
stacked on the PixelDP auto-encoder has an accuracy of
68.3% for L = 0.1, which is reasonable degradation com-
pared to the baseline of 77.5% for the unprotected network.
CIFAR-10: Accuracy goes from 95.5% without defense to
87% with the L = 0.1 defense. For comparison, the Madry
model has an accuracy of 87.3% on CIFAR-10. SVHN:
our L = 0.1 PixelDP network achieves 93.1% conventional
accuracy, down from 96.3% for the unprotected network.
For comparison, the L = 0.1 RobustOpt network has an
accuracy of 79.6%, although they use a smaller DNN due
to the computationally intensive method.

Second, as expected, constructing the network for larger
attacks (higher L) progressively degrades accuracy. Ima-
geNet: Increasing L to 0.3 and then 1.0 drops the accuracy
to 57.7% and 37.7%, respectively. CIFAR-10: The ResNet
with the least noise (L = 0.03) reaches 93.3% accuracy,
close to the baseline of 95.5%; increasing noise levels (L =
(0.1, 0.3, 1.0)) yields 87%, 70.9%, and 37.7%, respectively.
Yet, as shown in §IV-D, PixelDP networks trained with fairly
low L values (such as L = 0.1) already provide meaningful
empirical protection against larger attacks.

C. Certified Accuracy (Q2)
Q2: What accuracy can PixelDP certify on a test set?

Fig. 2 shows the certified robust accuracy bounds for Im-
ageNet and CIFAR-10 models, trained with various values
of the construction attack bound L. The certified accuracy
is shown as a function of the prediction robustness thresh-
old, T . We make two observations. First, PixelDP yields
meaningful robust accuracy bounds even on large networks
for ImageNet (see Fig. 2(a)), attesting the scalability of our
approach. The L = 0.1 network has a certified accuracy of
59% for attacks smaller than 0.09 in 2-norm. The L = 0.3
network has a certified accuracy of 40% to attacks up to
size 0.2. To our knowledge, PixelDP is the first defense to
yield DNNs with certified bounds on accuracy under 2-norm
attacks on datasets of ImageNet’s size and for large networks
like Inception.

Second, PixelDP networks constructed for larger attacks
(higher L, hence higher noise) tend to yield higher certified
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Fig. 2: Certified accuracy, varying the construction attack bound (L) and prediction robustness threshold (T ), on ImageNet
auto-encoder/Inception and CIFAR-10 ResNet, 2-norm bounds. Robust accuracy at high Robustness thresholds (high T ) increases with
high-noise networks (high L). Low noise networks are both more accurate and more certifiably robust for low T .

accuracy for high thresholds T . For example, the ResNet on
CIFAR-10 (see Fig. 2(b)) constructed with L = 0.03 has
the highest robust accuracy up to T = 0.03, but the ResNet
constructed with L = 0.1 becomes better past that threshold.
Similarly, the L = 0.3 ResNet has higher robust accuracy
than the L = 0.1 ResNet above the 0.14 2-norm prediction
robustness threshold.

We ran the same experiments on SVHN, CIFAR-100 and
MNIST models but omit the graphs for space reasons. Our
main conclusion – that adding more noise (higher L) hurts
both conventional and low T certified accuracy, but enhances
the quality of its high T predictions – holds in all cases.
Appendix B discusses the impact of some design choices
on robust accuracy, and Appendix D discusses PixelDP
guarantees as compared with previous certified defenses for
∞-norm attacks. While PixelDP does not yet yield strong
∞-norm bounds, it provides meaningful certified accuracy
bounds for 2-norm attacks, including on much larger and
more complex datasets and networks than those supported
by previous approaches.
D. Accuracy Under Attack (Q3)

A standard method to evaluate the strength of a defense is
to measure the conventional accuracy of a defended model
on malicious samples obtained by running a state-of-the-
art attack against samples in a held-out testing set [37].
We apply this method to answer three aspects of question
Q3: (1) Can PixelDP help defend complex models on large
datasets in practice? (2) How does PixelDP’s accuracy
under attack compare to state-of-the-art defenses? (3) How
does the accuracy under attack change for certified predic-
tions?
Accuracy under Attack on ImageNet. We first study
conventional accuracy under attack for PixelDP models on
ImageNet. Fig. 3 shows this metric for 2-norm attacks on
the baseline Inception-v3 model, as well as three defended
versions, with a stacked PixelDP auto-encoder trained with
construction attack bound L ∈ {0.1, 0.3, 1.0}. PixelDP
makes the model significantly more robust to attacks. For
attacks of size Lattack = 0.5, the baseline model’s accuracy
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Fig. 3: Accuracy under attack on ImageNet. For the Ima-
geNet auto-encoder plus Inception-v3, L ∈ {0.1, 0.3, 1.0} 2-
norm attacks. The PixelDP auto-encoder increases the robustness
of Inception against 2-norm attacks.

drops to 11%, whereas the L = 0.1 PixelDP model’s
accuracy remains above 60%. At Lattack = 1.5, the baseline
model has an accuracy of 0, but the L = 0.1 PixelDP is still
at 30%, while the L = 0.3 PixelDP model have more that
39% accuracy.
Accuracy under Attack Compared to Madry. Fig. 4(a)
compares conventional accuracy of a PixelDP model to that
of a Madry model on CIFAR-10, as the empirical attack
bound increases for 2-norm attacks. For 2-norm attacks,
our model achieves conventional accuracy on par with, or
slightly higher than, that of the Madry model. Both models
are dramatically more robust under this attack compared
to the baseline (undefended) model. For ∞-norm attacks
our model does not fare as well, which is expected as the
PixelDP model is trained to defend against 2-norm attacks,
while the Madry model is optimized for∞-norm attacks. For
Lattack = 0.01, PixelDP’s accuracy is 69%, 8 percentage
points lower than Madry’s. The gap increases until PixelDP
arrives at 0 accuracy for Lattack = 0.06, with Madry still
having 22%. Appendix §D details this evaluation.
Accuracy under Attack Compared to RobustOpt.
Fig. 4(b) shows a similar comparison with the RobustOpt de-
fense [65], which provides certified accuracy bounds for∞-
norm attacks. We use the SVHN dataset for the comparison
as the RobustOpt defense has not yet been applied to larger
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Fig. 4: Accuracy under 2-norm attack for PixelDP vs. Madry and RobustOpt, CIFAR-10 and SVHN. For 2-norm attacks, PixelDP
is on par with Madry until Lattack ≥ 1.2; RobustOpt support only small models, and has lower accuracy.
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Fig. 5: PixelDP certified predictions vs. Madry accuracy, under
attack, CIFAR-10 ResNets, 2-norm attack. PixelDP makes fewer
but more correct predictions up to Lattack = 1.0.

datasets. Due to our support of larger DNN (ResNet), Pix-
elDP starts with higher accuracy, which it maintains under 2-
norm attacks. For attacks of Lattack = 0.5, RobustOpt is bel-
low 20% accuracy, and PixelDP above 55%. Under∞-norm
attacks, the behavior is different: PixelDP has the advantage
up to Lattack = 0.015 (58.8% to 57.1%), and RobustOpt is
better thereafter. For instance, at Lattack = 0.03, PixelDP
has 22.8% accuracy, to RobustOpt’s 32.7%. Appendix §D
details the ∞-norm attack evaluation.
Precision on Certified Predictions Under Attack. Another
interesting feature of PixelDP is its ability to make certifi-
ably robust predictions. We compute the accuracy of these
certified predictions under attack – which we term robust
precision – and compare them to predictions of the Madry
network that do not provide such a certification. Fig. 5 shows
the results of considering only predictions with a certified
robustness above 0.05 and 0.1. It reflects the benefit to
be gained by applications that can leverage our theoretical
guarantees to filter out non-robust predictions. We observe
that PixelDP’s robust predictions are substantially more
correct than Madry’s predictions up to an empirical attack
bound of 1.1. For T = 0.05 PixelDP’s robust predictions are
93.9% accurate, and up to 10 percentage points more correct
under attack for Lattack ≤ 1.1. A robust prediction is given
for above 60% of the data points. The more conservative
the robustness test is (higher T ), the more correct PixelDP’s

predictions are, although it makes fewer of them (Certified
Fraction lines).

Thus, for applications that can afford to not act on a
minority of the predictions, PixelDP’s robust predictions
under 2-norm attack are substantially more precise than
Madry’s. For applications that need to act on every predic-
tion, PixelDP offers on-par accuracy under 2-norm attack to
Madry’s. Interestingly, although our defense is trained for
2-norm attacks, the first conclusion still holds for ∞-norm
attacks; the second (as we saw) does not.
E. Computational Overhead (Q4)

Q4: What is PixelDP’s computational overhead? We
evaluate overheads for training and prediction. PixelDP adds
little overhead for training, as the only additions are a
random noise tensor and sensitivity computations. On our
GPU, the CIFAR-10 ResNet baseline takes on average 0.65s
per training step. PixelDP versions take at most 0.66s per
training step (1.5% overhead). This represents a significant
benefit over adversarial training (e.g. Madry) that requires
finding good adversarial attacks for each image in the mini-
batch at each gradient step, and over robust optimization
(e.g. RobustOpt) that requires solving a constrained opti-
mization problem at each gradient step. The low training
overhead is instrumental to our support of large models and
datasets.

PixelDP impacts prediction more substantially, since it
uses multiple noise draws to estimate the label scores.
Making a prediction for a single image with 1 noise draw
takes 0.01s on average. Making 10 draws brings it only
to 0.02s, but 100 requires 0.13s, and 1000, 1.23s. It is
possible to use Hoeffding’s inequality [25] to bound the
number of draws necessary to distinguish the highest score
with probability at least η, given the difference between
the top two scores ymax − ysecond−max. Empirically, we
found that 300 draws were typically necessary to properly
certify a prediction, implying a prediction time of 0.42s
seconds, a 42× overhead. This is parallelizable, but resource
consumption is still substantial. To make simple predictions
– distinguish the top label when we must make a prediction
on all inputs – 25 draws are enough in practice, reducing



the overhead to 3×.

V. Analysis
We make three points about PixelDP’s guarantees and

applicability. First, we emphasize that our Monte Carlo
approximation of the function x 7→ E(A(x)) is not intended
to be a DP procedure. Hence, there is no need to apply
composition rules from DP, because we do not need this
randomized procedure to be DP. Rather, the Monte Carlo
approximation x 7→ Ê(A(x)) is just that: an approximation
to a function x 7→ E(A(x)) whose robustness guarantees
come from Lemma 1. The function x 7→ Ê(A(x)) does not
satisfy DP, but because we can control the Monte Carlo
estimation error using standard tools from probability theory,
it is also robust to small changes in the input, just like
x 7→ E(A(x)).

Second, Proposition 1 is not a high probability result; it
is valid with probability 1 even when A is (ε, δ > 0)-DP.
The δ parameter can be thought of as a “failure probability”
of an (ε, δ)-DP mechanism: a chance that a small change
in input will cause a big change in the probability of some
of its outputs. However, since we know that Ak(x) ∈ [0, 1],
the worst-case impact of such failures on the expectation
of the output of the (ε, δ)-DP mechanism is at most δ, as
proven in Lemma 1. Proposition 1 explicitly accounts for
this worst-case impact (term (1 + eε)δ in Equation (4)).

Were we able to compute E(A(x)) analytically, PixelDP
would output deterministic robustness certificates. In prac-
tice however, the exact value is too complex to compute,
and hence we approximate it using a Monte Carlo method.
This adds probabilistic measurement error bounds, making
the final certification (Proposition 2) a high probability
result. However, the uncertainty comes exclusively from the
Monte Carlo integration – and can be made arbitrarily small
with more runs of the PixelDP DNN – and not from the
underlying (ε, δ)-DP mechanism A. Making the uncertainty
small gives an adversary a small chance to fool a PixelDP
network into thinking that its prediction is robust when it is
not. The only ways an attacker can increase that chance is
by either submitting the same attack payload many times or
gaining control over PixelDP’s source of randomness.

Third, PixelDP applies to any task for which we can
measure changes to input in a meaningful p-norm, and
bound the sensitivity to such changes at a given layer
in the DNN (e.g. sensitivity to a bounded change in a
word frequency vector, or a change of class for categorical
attributes). PixelDP also applies to multiclass classification
where the prediction procedure returns several top-scoring
labels. Finally, Lemma 1 can be extended to apply to DP
mechanism with (bounded) output that can also be negative,
as shown in Appendix E. PixelDP thus directly applies
to DNNs for regression tasks (i.e. predicting a real value
instead of a category) as long as the output is bounded (or
unbounded if δ = 0). The output can be bounded due to the

specific task, or by truncating the results to a large range of
values and using a comparatively small δ.

VI. Related Work
Our work relates to a significant body of work in adver-

sarial examples and beyond. Our main contribution to this
space is to introduce a new and very different direction for
building certified defenses. Previous attempts have built on
robust optimization theory. In PixelDP we propose a new
approach built on differential privacy theory which exhibits
a level of flexibility, broad applicability, and scalability that
exceeds what robust optimization-based certified defenses
have demonstrated. While the most promising way to de-
fend against adversarial examples is still an open question,
we observe undebatable benefits unique to our DP based
approach, such as the post-processing guarantee of our
defense. In particular, the ability to prepend a defense to
unmodified networks via a PixelDP auto-encoder, as we did
to defend Inception with no structural changes, is unique
among certified (and best-effort) defenses.
Best-effort Defenses. Defenders have used multiple heuris-
tics to empirically increase DNNs’ robustness. These de-
fenses include model distillation [45], automated detection
of adversarial examples [24], [42], [41], application of
various input transformations [29], [10], randomization [23],
[11], and generative models [51], [27], [68]. Most of these
defenses have been broken, sometimes months after their
publication [7], [6], [2].

The main empirical defense that still holds is Madry et
al. [37], based on adversarial training [21]. Madry et al.
motivate their approach with robust optimization, a rigorous
theory. However not all the assumptions are met, as this
approach runs a best-effort attack on each image in the
minibatch at each gradient step, when the theory requires
finding the best possible adversarial attack. And indeed,
finding this worst case adversarial example for ReLU DNNs,
used in [37], was proven to be NP-hard in [53]. Therefore,
while this defense works well in practice, it gives no
theoretical guarantees for individual predictions or for the
model’s accuracy under attack. PixelDP leverages DP theory
to provide guarantees of robustness to arbitrary, norm-based
attacks for individual predictions.

Randomization-based defenses are closest in method to
our work [23], [11], [35]. For example, Liu et al. [35]
randomizes the entire DNN and predicts using an ensemble
of multiple copies of the DNN, essentially using draws
to roughly estimate the expected arg max prediction. They
observe empirically that randomization smoothens the pre-
diction function, improving robustness to adversarial ex-
amples. However, randomization-based prior work provides
limited formalism that is insufficient to answer important
defense design questions: where to add noise, in what
quantities, and what formal guarantees can be obtained from
randomization? The lack of formalism has caused some



works [23], [11] to add insufficient amounts of noise (e.g.,
noise not calibrated to pre-noise sensitivity), which makes
them vulnerable to attack [6]. On the contrary, [35] inserts
randomness into every layer of the DNN: our work shows
that adding the right amount of calibrated noise at a single
layer is sufficient to leverage DP’s post-processing guarantee
and carry the bounds through the end of the network.
Our paper formalizes randomization-based defenses using
DP theory, and in doing so helps answer many of these
design questions. Our formalism also lets us reason about
the guarantees obtained through randomization and enables
us to elevate randomization-based approaches from the class
of best-effort defenses to that of certified defenses.
Certified Defenses and Robustness Evaluations. PixelDP
offers two functions: (1) a strategy for learning robust
models and (2) a method for evaluating the robustness of
these models against adversarial examples. Both of these
approaches have been explored in the literature. First, several
certified defenses modify the neural network training process
to minimize the number of robustness violations [65], [52],
[12]. These approaches, though promising, do not yet scale
to larger networks like Google Inception [65], [52]. In
fact, all published certified defenses have been evaluated
on small models and datasets [65], [52], [12], [43], and
at least in one case, the authors directly acknowledge that
some components of their defense would be “completely
infeasible” on ImageNet [65]. A recent paper [16] presents
a certified defense evaluated on the CIFAR-10 dataset [33]
for multi-layer DNNs (but smaller than ResNets). Their
approach is completely different from ours and, based on
the current results we see no evidence that it can readily
scale to large datasets like ImageNet.

Another approach [53] combines robust optimization and
adversarial training in a way that gives formal guarantees and
has lower computational complexity than previous robust
optimization work, hence it has the potential to scale better.
This approach requires smooth DNNs (e.g., no ReLU or max
pooling) and robustness guarantees are over the expected
loss (e.g., log loss), whereas PixelDP can certify each
specific prediction, and also provides intuitive metrics like
robust accuracy, which is not supported by [53]. Finally,
unlike PixelDP, which we evaluated on five datasets of
increasing size and complexity, this technique was evaluated
only on MNIST, a small dataset that is notoriously amenable
to robust optimization (due to being almost black and white).
Since the effectiveness of all defenses depends on the model
and dataset, it is hard to conclude anything about how well
it will work on more complex datasets.

Second, several works seek to formally verify [26], [30],
[61], [62], [15], [20], [58] or lower bound [49], [63] the
robustness of pre-trained ML models against adversarial
attacks. Some of these works scale to large networks [49],
[63], but they are insufficient from a defense perspective as
they provide no scalable way to train robust models.

Differentially Private ML. Significant work focuses on
making ML algorithms DP to preserve the privacy of training
sets [40], [1], [9]. PixelDP is orthogonal to these works,
differing in goals, semantic, and algorithms. The only thing
we share with DP ML (and most other applied DP literature)
are DP theory and mechanisms. The goal of DP ML is to
learn the parameters of a model while ensuring DP with
respect to the training data. Public release of model param-
eters trained using a DP learning algorithm (such as DP
empirical risk minimization or ERM) is guaranteed to not
reveal much information about individual training examples.
PixelDP’s goal is to create a robust predictive model where
a small change to any input example does not drastically
change the model’s prediction on that example. We achieve
this by ensuring that the model’s scoring function is a DP
function with respect to the features of an input example
(eg, pixels). DP ML algorithms (e.g., DP ERM) do not
necessarily produce models that satisfy PixelDP’s semantic,
and our training algorithm for producing PixelDP models
does not ensure DP of training data.
Previous DP-Robustness Connections. Previous work stud-
ies generalization properties of DP [4]. It is shown that
learning algorithms that satisfy DP with respect to the
training data have statistical benefits in terms of out-of-
sample performance; or that DP has a deep connection
to robustness at the dataset level [14], [17]. Our work is
rather different. Our learning algorithm is not DP; rather,
the predictor we learn satisfies DP with respect to the atomic
units (e.g., pixels) of a given test point.

VII. Conclusion
We demonstrated a connection between robustness against

adversarial examples and differential privacy theory. We
showed how the connection can be leveraged to develop a
certified defense against such attacks that is (1) as effective
at defending against 2-norm attacks as today’s state-of-the-
art best-effort defense and (2) more scalable and broadly
applicable to large networks compared to any prior certified
defense. Finally, we presented the first evaluation of a
certified 2-norm defense on the large-scale ImageNet dataset.
In addition to offering encouraging results, the evaluation
highlighted the substantial flexibility of our approach by
leveraging a convenient autoencoder-based architecture to
make the experiments possible with limited resources.
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Appendix
A. Proof of Proposition 2

We briefly re-state the Proposition and detail the proof.

Proposition. Suppose A is (ε, δ)-PixelDP for size L in p-
norm metric. For any input x, if for some k ∈ K,

Êlb(Ak(x)) > e2ε max
i:i6=k

Êub(Ai(x)) + (1 + eε)δ,

then the multiclass classification model based on label
probabilities Ê(Ak(x)) is robust to attacks of p-norm L on
input x with probability higher than η.

Proof: Consider any α ∈ Bp(L), and let x′ := x + α.
From Equation (2), we have with p > η that

Ê(Ak(x′)) ≥ (Ê(Ak(x))− δ)/eε

≥ (Êlb(Ak(x))− δ)/eε,
Ê(Ai:i 6=k(x′)) ≤ eε max

i:i 6=k
Êub(Ai(x)) + δ, i 6= k.

Starting from the first inequality, and using the hypothesis,
followed by the second inequality, we get

Êlb(Ak(x)) > e2ε max
i:i6=k

Êub(Ai(x)) + (1 + eε)δ ⇒

Ê(Ak(x′)) ≥ (Êlb(Ak(x))− δ)/eε

> eε max
i:i 6=k

Êub(Ai(x)) + δ

> Ê(Ai:i 6=k(x′))

which is the robustness condition from Equation (1).
B. Design Choice

Our theoretical results allow the DP DNN to output any
bounded score over labels Ak(x). In the evaluation we used
the softmax output of the DNN, the typical “probabilities”
that DNNs traditionally output. We also experimented with
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Fig. 6: Robust Accuracy, argmax Scores. Using argmax scores
for certification yields better accuracy bounds (see Fig. 2(b)), both
because the scores are further appart and because the measurement
error bounds are tighter.
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Fig. 7: Laplace vs. Gaussian. Certified accuracy for a ResNet
on the CIFAR-10 dataset, against 1-norm bounded attacks. The
Laplace mechanism yields better accuracy for low noise levels, but
the Gaussian mechanism is better for high noise ResNets.

using arg max scores, transforming the probabilities in a
zero vector with a single 1 for the highest score label. As
each dimension of this vector is in [0, 1], our theory applies
as is. We observed that arg max scores were a bit less
robust empirically (lower accuracy under attack). However,
as shown on Fig. 6 arg max scores yield a higher certified
accuracy. This is both because we can use tighter bounds
for measurement error using a Clopper-Pearson interval,
and because the arg max pushes the expected scores further
apart, thus satisfying Proposition 1 more often.

We also study the impact of the DP mechanism used on
certified accuracy for 1-norm attacks. Both the Laplace and
Gaussian mechanisms can be used after the first convolution,
by respectively controlling the ∆1,1 or ∆1,2 sensitivity.
Fig. 7 shows that for our ResNet, the Laplace mechanism is
better suited to low levels of noise: for L = 0.1, it yields a
slightly higher accuracy (90.5% against 88.9%), as well as
better certified accuracy with a maximum robustness size of
1-norm 0.22 instead of 0.19, and a robust accuracy of 73%
against 65.4% at the 0.19 threshold. On the other hand, when
adding more noise (e.g. L = 0.3), the Gaussian mechanism
performs better, consistently yielding a robust accuracy 1.5
percentage point higher.
C. Attack Details

All evaluation results (§IV) are based on the attack
from Carlini and Wagner [7], specialized to better attack
PixelDP (see parameters and adaptation in §IV-A). We also



implemented variants of the iterative Projected Gradient
Descent (PGD) attack described in [37], modified to average
gradients over 15 noise draws per step, and performing
each attack 15 times with a small random initialization. We
implemented two version of this PGD attack.

2-norm Attack: The gradients are normalized before ap-
plying the step size, to ensure progress even when gradients
are close to flat. We perform k = 100 gradient steps
and select a step size of 2.5L

k . This heuristic ensures that
all feasible points within the 2-norm ball can be reached
after k steps. After each step, if the attack is larger than
L, we project it on the 2-norm ball by normalizing it.
Under this attack, results were qualitatively identical for
all experiments. The raw accuracy numbers were a few
percentage points higher (i.e. the attack was slightly less
efficient), so we kept the results for the Carlini and Wagner
attack.
∞-norm Attack: We perform max(L+ 8, 1.5L) gradient

steps and maintain a constant step of size of 0.003 (which
corresponds to the minimum pixel increment in a discrete
[0, 255] pixel range). At the end of each gradient step we
clip the size of the perturbation to enforce a perturbation
within the ∞-norm ball of the given attack size. We used
this attack to compare PixelDP with models from Madry
and RobustOpt (see results in Appendix D).

Finally, we performed sanity checks suggested in [2]. The
authors observe that several heuristic defenses do not ensure
the absence of adversarial examples, but merely make them
harder to find by obfuscating gradients. This phenomenon,
also referred to as gradient masking [46], [59], makes the
defense susceptible to new attacks crafted to circumvent
that obfuscation [2]. Although PixelDP provides certified
accuracy bounds that are guaranteed to hold regardless
of the attack used, we followed guidelines from [2], to
to rule out obfuscated gradients in our empirical results.
We verified three properties that can be symptomatic of
problematic attack behavior. First, when growing T , the
accuracy drops to 0 on all models and datasets. Second, our
attack significantly outperforms random sampling. Third, our
iterative attack is more powerful than the respective single-
step attack.

D. ∞-norm Attacks
As far as∞-norm attacks are concerned, we acknowledge

that the size of the attacks against which our current PixelDP
defense can certify accuracy is substantially lower than that
of previous certified defenses. Although previous defenses
have been demonstrated on MNIST and SVHN only, and for
smaller DNNs, they achieve ∞-norm defenses of T∞ = 0.1
with robust accuracy 91.6% [65] and 65% [52] on MNIST.
On SVHN, [65] uses T∞ = 0.01, achieving 59.3% of
certified accuracy. Using the crude bounds we have between
p-norms makes a comparison difficult in both directions.
Mapping ∞-norm bounds in 2-norm gives T2 ≥ T∞, also
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Fig. 8: Accuracy under ∞-norm attacks for PixelDP and
Madry. The Madry model, explicitly trained against ∞-norm
attacks, outperforms PixelDP. The difference increases with the
size of the attack.
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Fig. 9: Accuracy under ∞-norm attacks for PixelDP and
RobustOpt. PixelDP is better up to L∞ = 0.015, due to its support
of larger ResNet models. For attacks of ∞-norm above this value,
RobustOpt is more robust.

yielding very small bounds. On the other hand, translating
2-norm guarantees into ∞-norm ones (using that ‖x‖2 ≤√
n‖x‖∞ with n the size of the image) would require a

2-norm defense of size T2 = 2.8 to match the T∞ = 0.1
bound from MNIST, an order of magnitude higher than what
we can achieve. As comparison points, our L = 0.3 CNN
has a robust accuracy of 91.6% at T = 0.19 and 65%
at T = 0.39. We make the same observation on SVHN,
where we would need a bound at T2 = 0.56 to match the
T∞ = 0.01 bound, but our ResNet with L = 0.1 reaches
a similar robust accuracy as RobustOpt for T2 = 0.1. This
calls for the design ∞-norm specific PixelDP mechanisms
that could also scale to larger DNNs and datasets.

On Figures 8 and 9, we show PixelDP’s accuracy under
∞-norm attacks, compared to the Madry and RobustOpt
models, both trained specifically against this type of attacks.
On CIFAR-10, the Madry model outperforms PixelDP: for
Lattack = 0.01, PixelDP’s accuracy is 69%, 8 percentage
points lower than Madry’s. The gap increases until PixelDP
arrives at 0 accuracy for Lattack = 0.06, with Madry still
having 22%.

On SVHN, against the RobustOpt model, trained with
robust optimization against ∞-norm attacks, PixelDP is
better up to L∞ = 0.015, due to its support of larger ResNet
models. For attacks of∞-norm above this value, RobustOpt
is more robust.



E. Extension to regression
A previous version of this paper contained an incorrect

claim in the statement of Lemma 1 for outputs that can be
negative. Because the paper focused on classification, where
DNN scores are in [0, 1], the error had no impact on the
claims or experimental results for classification. Lemma 2,
below, provides a correct version of Lemma 1 for outputs
that can be negative, showing how PixelDP can be extended
to support regression problems:

Lemma 2. (General Expected Output Stability Bound)
Suppose a randomized function A, with bounded output
A(x) ∈ [a, b], a, b ∈ R, with a ≤ 0 ≤ b, satisfies (ε, δ)-DP.
Let A+(x) = max(0, A(x)) and A−(x) = −min(0, A(x)),
so that A(x) = A+(x)−A−(x). Then the expected value of
its output meets the following property: for all α ∈ Bp(1),

E(A(x+ α)) ≤ eεE(A+(x))− e−εE(A−(x)) + bδ − e−εaδ,
E(A(x+ α)) ≥ e−εE(A+(x))− eεE(A−(x))− e−εbδ + aδ.

The expectation is taken over the randomness in A.

Proof: Consider any α ∈ Bp(1), and let x′ :=

x + α. Observe that E(A+(x)) =
∫ b

0
P (A(x) >

t)dt, so by the (ε, δ)-DP property of A via Equa-
tion (2), we have E(A+(x′)) ≤ eεE(A+(x)) + bδ
and E(A+(x′)) ≥ e−εE(A+(x)) − e−εbδ. Similarly,
E(A−(x′)) ≤ eεE(A−(x)) − aδ and E(A−(x′)) ≥
e−εE(A+(x)) + e−εaδ. Putting these four inequalities to-
gether concludes the proof.

Following Lemma 2, supporting regression problems in-
volves three steps. First, if the output is unbounded, one
must use (ε, 0)-DP (e.g. with the Laplace mechanism). If
the output is bounded, one may use (ε, δ)-DP. The output
may be bounded either naturally, because the specific task
has inherent output bounds, or by truncating the results to a
large range of values and using a comparatively small δ.

Second, instead of estimating the expected value of the
randomized prediction function, we estimate both A+(x)
and A−(x). We can use Hoeffding’s inequality [25] or
Empirical Bernstein bounds [39] to bound the error.

Third, following Lemma 2, we bound A+(x) and A−(x)
separately using the DP Expected Output Stability Bound,
to obtain a bound on E(A(x)) = E(A+(x))− E(A−(x)).


