
The MEERKATS Cloud Security Architecture
Angelos D. Keromytis, Roxana Geambasu, Simha Sethumadhavan, Salvatore J. Stolfo, Junfeng Yang

Columbia University
{angelos,roxana,simha,sal,junfeng}@cs.columbia.edu

Azzedine Benameur, Marc Dacier, Matthew Elder, Darrell Kienzle
Symantec Research Labs

{firstname lastname}@symantec.com

Angelos Stavrou
George Mason University

astavrou@gmu.edu

Abstract—MEERKATS is a novel architecture for cloud environ-
ments that elevates continuous system evolution and change as
first-rate design principles. Our goal is to enable an environment
for cloud services that constantly changes along several dimen-
sions, toward creating an unpredictable target for an adversary.
This unpredictability will both impede the adversary’s ability
to achieve an initial system compromise and, if a compromise
occurs, to detect, disrupt, and/or otherwise impede his abil-
ity to exploit this success. Thus, we envision an environment
where cloud services and data are constantly in flux, using
adaptive (both proactive and reactive) protection mechanisms
and distributed monitoring at various levels of abstraction. A
key element of MEERKATS is the focus on both the software
and the data in the cloud, not just protecting but leveraging
both to improve mission resilience. MEERKATS seeks to effectively
exploit “economies of scale” (in resources available) to provide
higher flexibility and effectiveness in the deployment and use
of protection mechanisms as and where needed, focusing on
current and anticipated application and mission needs instead
of an inefficient, “blanket” approach to protecting “everything
the same way, all the time”. We outline our vision for MEERKATS
and describe our approach toward prototyping it.

I. INTRODUCTION

As cloud computing gains more traction, whether in the
form of public clouds (e.g., Amazon EC2) or enterprise-
private ones, an increasing number of critical applications are
deployed and operated in such computational environments.
Given the concentration of services and data, often from a
large number of different entities, into a single logical location,
cloud infrastructures represent a tempting and highly lucrative
target for malicious entities. Therefore, the security expecta-
tions from cloud computing infrastructures are (or should be)
arguably higher than those in more “diffuse” computing.

While there is probably some basis to the expectation that
unified and concentrated administration and management will
lead to better overall security, the current state of affairs
regarding the (in)security of enterprise networks and systems
does not inspire confidence in that respect. In other words,
given existing security mechanisms and practices, it is likely
that any gains from homogeneity and higher professional
standards will not be sufficient to protect the cloud infras-
tructure and the applications running on it from even more
motivated adversaries. We argue that we need to rethink cloud
security, introducing new principles for cloud infrastructures

and applications that leverage the strengths inherent in this
form of computing to improve security.

We observe that a key characteristic of cloud computing
is the overprovisioning of resources to comfortably accom-
modate the highest expected workload, with some margin
of error. This leads to “dormant” resources, which are not
used most of the time, to the tune of 20%–50% of typical
workload levels. The argument has been made that such
resources can be used, at least some of the time, to protect
the cloud infrastructure and all applications on it. However, if
spread across all applications, the quantitative improvement in
security (e.g., by being able to use a given security mechanism
whose overhead is compensated by increased resource usage)
will be incremental and small.

In MEERKATS we argue for a mission-oriented cloud
computing security architecture that (a) focuses resources
to improve the resiliency of components that are critical to
the current mission/application, (b) learns and adapts to past,
current, and anticipated threats, and (c) inherently presents an
unpredictable target through continuous “motion” and muta-
tion of services and data, and through the use of deception.

The two high-level challenges to our envisioned architecture
are (1) the lack of the efficient and effective mechanisms for
instantiating several of our architecture’s core elements, and
(2) the complexity of integrating and operating an architecture
where “everything changes”. To realize our vision we need
to investigate, develop, and evaluate a number of individual
components, and to integrate them in a coherent architecture.

The main components of MEERKATS are (a) DMCC, a
distributed monitoring and cross-checking substrate that op-
erates at multiple levels of abstraction (network, process, and
function/instruction), whose goal is to learn models of normal
behavior and to detect anomalous behavior; (b) CSSH, a set of
mechanisms that allow for targeted and adaptive hardening and
healing of programs, allowing for tunable protection schemes
to be applied on select application instances at any given time,
both leveraging and feeding the DMCC; (c) CISR, an artificial
diversity mechanism based on Instruction-Set Randomiza-
tion [1], [2], coordinated across program replicas to ensure
non-alignment; (d) CSIFT, a fine-grained cross-host/cross-
application information flow tracking system; (e) DIGIT, a de-
ceptive information generation, injection, and tracking compo-



nent aimed at detecting and confusing adversaries; (f) Evade,
a system for splitting, moving and recombining information
on demand across the cloud infrastructure using lightweight
data migration; (g) N-Schedule, a mechanism for exploiting
redundancy to detect attacks and failures due to concurrency
errors and vulnerabilities; (h) MiSS, a system for fast and
seamless process migration, data, and network reconstitution,
effectively mitigating attacks that target individual application
instances and “pinch-points” in cloud application instances
and network communications; (i) DREME, an environment
for enabling synchronized execution of software replicas with
varying diversification strategies, using distributed correlation
techniques for monitoring the health of those software replicas;
and (j) hardware support for streamlining the execution of
replicas and for fast checkpoint/migration.

The various components seek to address overlapping and
complementary types of adversaries and attacks, and interact
in several ways. CSSH and CISR seek to prevent altogether
or detect a low-level software compromise shortly after the
attack occurs. Both components can be targeted to specific
applications (or even portions of an application), and can
share information to coordinate cloud-wide protection. The
DMCC provides anomaly detection capabilities (both for
use with CSSH, and as a fallback detector); it also gathers
information that can be used to improved the functionality
of other mechanisms (especially CSSH and CSIFT), e.g.,
identification of rescue points for use in self-healing [3].
MiSS and DREME provide code migration and containment
capabilities, and Evade provides data migration capabilities—
all these are meant to be used both proactively (as a “moving
target” defense) and reactively (in response to a detected
compromise). CSSH and MiSS will also provide recovery
capabilities, and the same combination will also enable us
to lower performance overheads through the use of replicated
execution. DIGIT is a complementary mechanism that seeks to
confuse and misdirect adversaries through the use of deceptive
information and computation (coordinating with Evade for the
former, depending on MiSS and DREME for the latter). CSIFT
provides fine-grained data tracking and exfiltration-detection
capabilities across the cloud, and interacts both with Evade
(for tracking legitimate data) and DIGIT (for tracking decep-
tive information). N-Schedule addresses concurrency bugs by
leveraging deterministic scheduling and replicated execution.

In the remainder of this paper, we provide detail on the
specific components that we are developing for MEERKATS.

II. RESEARCH DIRECTION

To set our discussion of the individual research thrusts in
context, we provide an example scenario of how MEERKATS
might be used in the context of a cloud infrastructure sup-
porting multiple diverse applications that are composed into
on-demand (or pre-planned) missions. At any given time, some
missions (and therefore applications) will be more impor-
tant than others; MEERKATS will concentrate its efforts in
protecting those applications, while expending minimal (but
sufficient) effort in preserving the remaining applications.

Once a mission is planned and the critical assets identified,
MEERKATS will begin by using CSSH to harden these, and
deploy several replicas using DREME, if that is not already
the case. Some of these replicas may be diversified with
CISR and N-Schedule. DMCC will be monitoring both the
specific applications and the overall infrastructure, exploiting
knowledge from previous executions and missions. Simulta-
neously, the critical data will be pre-positioned using Evade.
CSIFT will be tracking the use of said data, while DIGIT will
also leverage DREME, Evade and MiSS to create artificial
targets. If an attack or compromise is identified, uncorrupted
components will be migrated elsewhere with MiSS, and data
will be moved by Evade. Any corrupted components might be
recovered with CSSH, or they may simply be abandoned, or
they may be replaced by deceptive computation (via DIGIT)
to divert attacker attention and effort.

We now describe some of our components in more detail;
due to space limitations, we cannot discuss them all equally.

A. DMCC: Distributed Monitoring and Crosschecking

The DMCC portion of the system is the major component
that integrates and correlates information feeds from multiple
MEERKATS components. The key capability we seek is to
identify abnormal execution events that indicate attacks re-
quiring immediately mitigation. This is largely accomplished
via correlation of detected anomaly alerts.

The anomaly detection (AD) algorithm we will use is based
on the Probabilistic Anomaly Detection (PAD) algorithm [4],
[5], [6]. PAD has been applied to Windows Registry, process
execution, file system access, and network packet header
anomaly detection. Here, we will apply an improved and faster
version of PAD to program execution state information to
detect errant program behavior, as well as other novel audit
sources as provided by other MEERKATS components such as
CSIFT, N-Schedule, and CSSH.

One research thrust we are pursuing is how to extract from
the system specific information, such as function names on
the stack, the argument buffer name it may reference, and
potentially other lower-level system and processor features,
such as the Translation Lookahead Buffer access patterns, that
may be used to identify abnormal system behavior previously
tested by prior use of a common “test vector” that baselined
the application. A focus problem in this area is to define the
particular features extracted and that are efficiently processed
to maximize detection performance (maximal true positive
rates and minimized false positives). This information would
enrich the potential alerts from other system components to
reduce false positives and identify true attacks. Correlating this
information is conducted by use of gold standard test vectors
used to baseline the systems expected behavior. Careful cre-
ation of test vectors is necessary to learn the most effective
correlation function that maximizes detection performance.

B. CSSH: Collaborative Self-healing and Service Hardening

A key component of MEERKATS is CSSH, a novel mech-
anism that allows for selective, tunable application of a



number of software hardening and self-healing techniques
to applications. CSSH itself is composed of a number of
elements, primarily centered around PIN [7], an extensible
dynamic binary rewriting framework that allows us to instru-
ment arbitrary instructions and functions so that we can insert
hardening and self-healing functionality with great precision.
Furthermore, PIN allows us to instrument (and de-instrument)
already-running programs. The combination of selectivity, fine
granularity, and flexibility in injected instrumentation will
allow us to deploy hardening functionality as and where it is
needed, focusing computational resources to protecting current
mission needs. We envision deployment under the guidance of
DMCC, under manual control, and through an API exposed
to other detection mechanisms.

The protection mechanisms that CSSH will enable
include REASSURE [3], Write-Read Integrity Testing
(WRIT), stack/heap buffer overflow protection, number han-
dling vulnerability masking (divide-by-zero, integer over-
flow/underflow, etc.), NULL pointer protection, Control
Flow Integrity (CFI) [8], and limited race condition detec-
tion/avoidance. CSSH will also be used to insert probes
and detectors within an application, to provide fine-grained
behavior information to the DMCC. REASSURE is a soft-
ware self-healing mechanism that can be used to recover
from unforeseen errors or vulnerabilities, using existing code
locations that handle certain anticipated errors as “graceful” (if
unintended) exception handlers, providing both integrity and
availability guarantees. MEERKATS will extend REASSURE
by enabling the sharing of alerts and fixes, and will leverage
efficient replicated execution to provide low-overhead service
and community resilience. WRIT is a novel mechanism that
applies points-to analysis to determine the correct Read and
Write Sets for each instruction (or group of instructions), and
insert instrumentation to detect deviating memory accesses.

CSSH is also implementing Coordinated Instruction Set
Randomization (CISR), an extension to our baseline ISR
technique [1]. ISR obfuscates the “language” understood by a
system to protect against code-injection attacks by present-
ing an ever-changing target. MEERKATS is extending ISR
to coordinate randomization across replicas and independent
application instances, to ensure attack-vector independence
and thus rapid detection of attacks.

C. CSIFT: Cross-System Information Flow Tracking

A novel multi-use component that we are developing as
part of MEERKATS is CSIFT, a fine-grained information
flow tracking (IFT) system. CSIFT will allow us to trans-
parently perform byte- or word-level IFT within and across
individual processes and systems. To achieve this, we will
use our high-performance data tracking library, libdft, which
is built on top of PIN. CSIFT will allow for labels to
be transparently propagated across CSIFT/CSSH-supervised
processes by multiplexing label transmission with application
data over the same channel (e.g., pipe or network socket).
CSIFT will operate on unmodified program binaries, and will
offer flexible assignment of “taint” sources. CSIFT will track

the provenance, consumption and attempted exfiltration of
sensitive information across the distributed cloud application
in several ways: combined with PPSE (Section II-B) and
replicated execution (Section II-H), it will allow for low-
overhead tracking (both by pipelining the tracking and through
post mortem analysis via replicas); combined with DIGIT
(Section II-D), it will allow for the detection and monitoring of
adversaries that are accessing deceptive information; combined
with Evade (Section II-E), it will provide both resilience
against and detection of data exfiltration; combined with
DMCC (Section II-A), it will learn each service’s “normal”
information flow pathways, and detect deviations.

D. DIGIT: Deceptive Information Generation, Injection, and
Tracking

To deal with attackers that have managed to penetrate
a system, and to divert attempted attacks, we propose to
integrate the use of deceptive information. DIGIT is a novel
approach to detecting, confusing, and misdirecting attackers by
using deceptive information and “throw-away” computation.
We propose to leverage our ability to create and operate a
large number of application replicas, some of which (called
the “deception set”, or DS) are provided with fake inputs.
Thus, an adversary controlling a malicious or compromised
replica will be uncertain as to the validity of any captured data.
Primary replicas will also periodically be placed in the DS
simply by changing the source of inputs, and a new primary
replica will be chosen. We will leverage the MEERKATS
functionality for replicated execution, to modify some of the
inputs on other replicas. The inputs will contain automatically
generated enticing and believable deceptive information (DI)
whose misuse by an adversary can be subsequently detected.
Examples of such enticing bait information include documents
with built-in “beacons” [9], URLs and username/passwords to
honeypots or sites whose access can be directly or indirectly
monitored [10], credit card and bank account numbers with
triggers [11], etc. Other types of DI that we plan to use include
deceptive documents in the filesystem and entries in database
tables (or entire databases). Furthermore, CSIFT can provide
DI tracking within the cloud infrastructure. The exact type of
bait used depends on the application.

We are combining the use of DI with migration, containment
and replication functionality (Sections II-G and II-H) to create
execution environments (individual processes and complete
VMs) that are partly or entirely deceptive. Thus, adversaries
will either waste their efforts attempting to compromise these
systems (and betray their presence) or, if already in the
system, they will waste effort trying to exploit their initial
success. Furthermore, by using VM and process migration,
we will be able to move legitimate computation away from
a targeted or compromised VM/host, and replace it with
deceptive computation. CSSH instrumentation will also allow
us to analyze adversary activities and take containment actions
in VMs and hosts that are not yet compromised.

The main challenge in building DIGIT is the believability
of generated DI. We propose to leverage the DMCC to learn



from prior execution runs and construct realistic inputs that
will cause the same execution path within a replica to be taken.

E. Evade: Avoiding Danger with Lightweight Data Migration
To protect data against attacks in a diversified cloud, we

propose Evade, a security-oriented distributed storage system
in which data runs away from (or evades) danger. In Evade, as
soon as a machine is suspected to be compromised or vulnera-
ble to future attacks, its data will immediately disappear from
that location and emerge at a different location. Moreover,
the data periodically “jumps” from one location to another
randomly, impeding targeted attacks. Evade’s data migration
is fast, independent of the data’s size, allowing us to create a
fast-flux, unpredictable environment.

At a high level, Evade supports lightweight migration
by combining proactive secret sharing [12] with distributed,
replicated storage systems. Each data object is encrypted with
its own symmetric key, and the ciphertext is replicated on
N devices. The ciphertext replicas are of two types: active
replicas (M replicas, M < N ) and inactive replicas (N −M
replicas). Active replicas participate in a proactive secret
sharing protocol to store the key in a distributed fashion,
requiring any T of the M active replicas to be compromised
in order for the data’s privacy to be compromised. The active
replicas also respond to authenticated clients’ requests.

For swift migration, the system maintains a pool of inactive
replicas that contain versions of the ciphertext, but do not
participate in secret sharing or client requests. Capturing any
number of inactive replicas provides no benefit to the attacker.
Periodically, or whenever an active replica is in danger, the
other active replicas choose at random an inactive replica and
run a mobile proactive secret sharing protocol [13] to (1)
include the new replica into the active set, and (2) exclude the
old replica from the active set. Using pre-established ciphertext
replicas, data migration in Evade involves merely transferring
small key shares instead of the actual data.

F. N-Schedule
We are developing N-Schedule, a novel, unique component

within MEERKATS to provide effective, transparent, and per-
vasive protection against unknown concurrency vulnerabilities.
The key idea in N-Schedule is to diversify scheduling: making
different replicas run different thread schedules. If one replica
crashes or is exploited due to a concurrency vulnerability,
the other replicas will be unaffected with high probability,
because N-Schedule deliberately forces replicas to run diver-
sified schedules. Thus, by diversifying schedules, N-Schedule
will make a multithreaded program more robust against con-
currency vulnerabilities. N-Schedule’s explicit control over
scheduling will also simplify forensic analysis of concurrency
attacks. To deterministically replay a compromised execution,
users run the same program on the same input, automatically
reproducing the thread schedule that occurred in the attack.

G. MiSS: Migrating Software Swiftly
To prevent targeted attacks that originate both from insiders

or from outside, we introduce a system for fast and seamless

migration of the software and network state of application
instances. The proposed system, called Migrating Software
Swiftly (MiSS), leverages advances in lightweight process vir-
tualization to move, re-instantiate, and re-route traffic between
and for application instances between cloud nodes. Our aim is
to provide a “moving target” defense for the hosted application
instances. By moving application processes and re-routing
their network connectivity, we can effectively mitigate attacks
that target individual application instances and “pinch-points”
in cloud application instances and network communications.

For our system, we are using open-source lightweight
process virtualization systems that support Unix systems. They
are effectively providing on top of the OS a thin virtualization
layer called a container that provides a group of processes with
a private namespace. The sandboxed process group always
sees the same virtualized view of the system, which associates
virtual identifiers with OS resources such as process identifiers
and network addresses. This decouples sandboxed processes
from dependencies on the host OS and from other processes in
the system. This virtualization is integrated with a checkpoint-
restart mechanism that enables the sandboxed processes to
be migrated as a unit to another machine. These process
groups are independent and self-contained, and can thus be
migrated freely without leaving behind any residual state after
migration, even when migrating network applications while
preserving their network connections. We can therefore allow
applications to execute after migration even if the machine on
which they previously executed is no longer available.

H. DREME: Diversified Replica Execution and Monitoring
Environment

To enable the execution of software replicas in support of
MEERKATS’ other components and capabilities, we propose
DREME: an environment for (1) creating and executing
multiple instances of a software application, possibly using
varying diversification strategies (e.g., CISR), and (2) mon-
itoring the health of those software replicas by collecting a
greater volume of data on possibly suspicious indications and
then applying distributed correlation techniques to manage
that data. DREME enables the synchronized execution of
application replicas via the distribution of inputs, outputs,
and key program state between replicas. The comparison
of this data across replicas enables detection of attacks and
compromise. Execution of mission applications using replicas
within the cloud provides an opportunity to apply additional
computational resources for more “aggressive” attack detec-
tion strategies, such as collection of more indications of
“suspicious” behavior within replicas and their environments,
and the use of correlation techniques across replicas to further
vet those indications. Upon detection of replica compromise,
DREME will provide capabilities for reconfiguring the remain-
ing replicas, introducing additional possibly diverse replicas,
and adapting the monitoring and detection strategies used.

DREME works in concert with the lightweight process
virtualization technology of MiSS to provide this execution
environment for application instances. DREME also takes ad-



vantage of traditional “heavyweight” virtualization technology,
using a hypervisor and virtual machine monitor to provide
isolation of the monitoring environment from the application
environment. This architecture enables additional diversifica-
tion strategies to be employed with the replicas, while also
enhancing the monitoring capabilities of the infrastructure.

From our vantage point monitoring the application from
an external virtual machine, we can determine when changes
occur that affect the integrity of either the running application
instance or the operating system. We will also monitor for
behaviors and characteristics that could be considered accept-
able in certain situations but suspicious in other contexts, such
as changes to a process’s export table or kernel hooks. By
collecting data on these acceptable but suspicious observables,
we turn each replica into a “chatty” sensor that can be used
to determine when a replica exhibits indications of an attack.

I. Hardware Support

Future cloud hardware chips will have several on-chip
accelerators dedicated to application or domain specific tasks.
These accelerators are the key to improving energy-efficiency
and scalability in the face of diminishing gains from traditional
Moore’s Law scaling. Accelerators improve energy efficiency
by implementing algorithms in silicon, reducing bookeeping
overheads. Instances of these special-purpose devices in com-
modity hardware today include GPUs (e.g.,, AMD Fusion,
Sandybridge) or cryptographic units. For the fast migration
support we envision in MEERKATS (through MiSS) these
accelerators must be handled as first-class OS objects. The
state of the art, however, is to use these accelerators as
slave I/O devices that cannot be directly accessed by user-
mode programs, thus requiring several user-kernel transitions,
consequently reducing throughput for interactive applications.
Further, as there is no common architectural specification or
hardware support for checkpointing and migration in these
accelerators, moving computation around may further degrade
performance. To overcome these problems, we envision hard-
ware support for tracking those pages that are touched by the
accelerators, and a special purpose accelerator for managing
migration itself. This will be used in concert with architectural
and OS modifications that are required for treating these
accelerators as processors instead of slave devices.

Naive execution of diversified replicas spawned by the
DREME shim layer can significantly impact throughput of
cloud oriented systems. To avoid slowdowns we propose
hardware support in the form of memoization caches that
selectively re-use values from previous computations in diver-
sified replicas. User annotations, CSIFT and DIGIT analyses
will all be used to determine computations that can be reused.

III. SUMMARY

Current systems provide mostly “static” targets with limited
ability to react, much less fundamentally change in security-
relevant or security-significant ways. Even when such capa-
bilities exist (e.g., threshold cryptography, system migration

capabilities), they operate in an isolated, uncoordinated fash-
ion, without leveraging the distributed nature of the cloud.
Such techniques are designed and used with no provision for
adaptation; this leads to inefficient use of security resources on
components and data that are peripheral to the current mission.

If our effort in developing MEERKATS is successful, we will
create a “moving target” defense mechanism for the cloud that
will leverage the inherent distributed nature of the cloud to
improve service and data resilience to threats and attacks. The
ability of MEERKATS to explicitly control the tradeoff between
resilience/security and resource consumption is fundamental
to the adoption of security mechanisms. We argue that the
inherent availability of fungible resources in the cloud and
the ability of MEERKATS to both strategically and tactically
deploy them as the situation warrants (e.g., in anticipation of or
in response to an attack against a specific service or collection
of data) will result in a more secure environment compared
to current systems and services making, at best, small-scale
tradeoffs between security and resource consumption.

Acknowledgements: This work was supported by
DARPA through Contract FA8650-11-C-7190. Any opinions,
findings, conclusions or recommendations expressed herein are
those of the authors, and do not necessarily reflect those of
the US Government or DARPA.

REFERENCES

[1] Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-Injection
Attacks With Instruction-Set Randomization. In: Proceedings of the
10th ACM CCS. (2003) 272–280

[2] Portokalidis, G., Keromytis, A.D.: Fast and Practical Instruction-Set
Randomization for Commodity Systems. In: Proceedings of ACSAC.
(2010)

[3] Portokalidis, G., Keromytis, A.D.: REASSURE: A Self-contained
Mechanism for Healing Software Using Rescue Points. In: Proceedings
of the 6th International Workshop on Security (IWSEC). (2011)

[4] Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.J.: Detecting
malicious software by monitoring anomalous windows registry accesses.
In: Proceedings of RAID. (2002)

[5] Wang, K., Parekh, J., Stolfo, S.J.: Anagram: A content anomaly
detector resistant to mimicry attack. In: Proceedings of the International
Symposium on Recent Advances in Intrusion Detection (RAID). (2006)

[6] Frias-Martinez, V., Stolfo, S.J., Keromytos, A.D.: Behavior-profile
clustering for false alert reduction in anomaly detection sensors. In:
Proceedings of ACSAC. (2008)

[7] Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace,
S., Reddi, V., Hazelwood, K.: Pin: building customized program analysis
tools with dynamic instrumentation. In: Proceedings of PLDI. (2005)
190–200

[8] Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity:
principles, implementations, and applications. In: Proceedings of the
ACM Conference on Computer and Communications Security. (2005)

[9] Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting Inside
Attackers Using Decoy Documents. In: Proceedings of SecureComm.
(2009) 51–70

[10] Bowen, B.M., Kemerlis, V., Prahu, P., Keromytis, A.D., Stolfo, S.J.:
Automating the Injection of Believable Decoys to Detect Snooping
(Short Paper). In: Proceedings of WiSec. (2010) 81–86

[11] Bowen, B.M., Prabhu, P., Kemerlis, V.P., Sidiroglou, S., Keromytis,
A.D., Stolfo, S.J.: BotSwindler: Tamper Resistant Injection of Believable
Decoys in VM-Based Hosts for Crimeware Detection. In: Proceedings
of RAID. (2010) 118–137

[12] Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret
sharing or: How to cope with perpetual leakage. In: Proceedings of
CRYPTO. (1995)

[13] Schultz, D., Liskov, B., Liskov, M.: Mobile proactive secret sharing. In:
Proceedings of PODC. (2008) Brief Announcement.


