
Discovering Unwarranted Associations in Data-Driven Applications with the
FairTest Testing Toolkit

Florian Tramèr1, Vaggelis Atlidakis2, Roxana Geambasu2, Daniel Hsu2,
Jean-Pierre Hubaux1, Mathias Humbert4, Ari Juels3, and Huang Lin1

1École Polytechnique
Fédérale de Lausanne — 2Columbia University — 3Cornell Tech — 4Saarland University

Abstract
In today’s data-driven world, programmers routinely

incorporate user data into complex algorithms, heuris-
tics, and application pipelines. While often beneficial,
this practice can have unintended and detrimental con-
sequences, such as the discriminatory effects identified
in Staples’ online pricing algorithm and the racially
offensive labels recently found in Google’s image tagger.

We argue that such effects are bugs that should be
tested for and debugged in a manner similar to func-
tionality, performance, and security bugs. We describe
FairTest, a testing toolkit that detects unwarranted
associations between an algorithm’s outputs (e.g., prices
or labels) and user subpopulations, including protected
groups (e.g., defined by race or gender). FairTest reports
any statistically significant associations to programmers
as potential bugs, ranked by their strength and likelihood
of being unintentional, rather than necessary effects.

We designed FairTest for ease of use by programmers
and integrated it into the evaluation framework of SciPy,
a popular library for data analytics. We used FairTest
experimentally to identify unfair disparate impact, of-
fensive labeling, and disparate rates of algorithmic error
in six applications and datasets. As examples, our results
reveal subtle biases against older populations in the dis-
tribution of error in a real predictive health application,
and offensive racial labeling in an image tagger.

1 Introduction
Today’s applications – ranging from simple mobile
games to complex web applications – are increasingly
data-driven. User data, such as clicks, locations, and so-
cial information, can enhance user experience by letting
applications customize their functionality, contents, and
offers according to individual preferences. Data can also
improve business revenues by enabling effective product
placement and targeted advertising. Finally, incorpo-
rating data into a wide spectrum of societal processes,
including healthcare, crime prevention, and emergency
response, promises to vastly improve their efficiency.

Despite these benefits, integrating user data into ap-
plications and decision making can have unintended and
detrimental consequences that are often difficult to antic-
ipate. A case in point is the Staples differential pricing
case [52]. Staples’ seemingly rational decision to adjust
online prices based on user-proximity to competitor

stores led to consistently higher prices for low-income
customers, who (as it turns out) generally live farther
from these stores. Staples’ intentions aside, the difficulty
of foreseeing all subtle implications and risks of data-
driven heuristics is clear. And the risk of such unintended
side-effects will only increase as new kinds of personal
and user-generated data – e.g., collected through the
Internet of Things – are passed through increasingly
complex machine learning algorithms, whose associa-
tions and inferences are (arguably) impossible to foresee.

It is no wonder, then, that reports of discriminatory ef-
fects in data-driven applications litter the news. Google’s
image tagger was recently found to associate racially
offensive labels with images of black people [19].
Discriminatory online advertising has been shown to
associate ads for lower-paying jobs with women [8] and
offensive, racially charged ads with black people [49].

We argue that such algorithmic biases – which we
generically call unwarranted associations – are new
kinds of bugs specific to modern, data-driven applica-
tions, which programmers should actively test for, debug,
and fix with the same urgency as they apply to func-
tionality, performance, and security bugs. Unwarranted
association bugs may offend or even harm users. They
can cause programmers and businesses embarrassment,
mistrust, and potentially loss of revenue. Finally, unwar-
ranted associations may be symptoms of an actual mal-
function of a data-driven algorithm, such as a machine
learning algorithm exhibiting poor accuracy for minority
groups that are under-represented in its training set [23].

We present FairTest, a testing toolkit for data-driven
applications that helps programmers test for and to some
extent debug unwarranted associations. At its core,
FairTest detects statistically significant associations
between an algorithm’s outputs (e.g., prices or labels)
and user subpopulations, including protected groups
(e.g., those defined by race, gender, or income level).
It then reports any statistically significant effects as
association bugs, filtered and ranked by their strength,
statistical significance, and likelihood of being unin-
tended side-effects rather than necessary consequences
of an application requirement. FairTest identifies both
weak associations that affect large populations and
strong associations that affect smaller subpopulations.
For example, our simulation of Staples’ pricing scheme

1

fed with data from the U.S. census revealed that while
some disparate impact on low-income populations arises
across the entire U.S., certain parts of the country, such as
New York state, exhibit stronger discriminatory effects.

A key innovation in FairTest is its guided decision
tree construction algorithm, which efficiently derives
semantically meaningful subpopulations that appear
most affected by an association bug. In prior work,
detecting such subpopulations has required uninformed,
exhaustive searches for hidden associations [38, 47, 48].
Inspired by decision tree algorithms from machine learn-
ing, our algorithm recursively splits the user population
into subsets so as to maximize some association metric
between algorithm outputs (e.g., a price) and protected
user attributes (e.g., race). At every step, the tree
therefore discovers subpopulations of decreasing size
but with increasingly stronger discriminatory effects.

This core functionality is surprisingly flexible, en-
abling a wide variety of investigations that programmers
may wish to perform on their data-driven applications.
At present, FairTest supports three main investigation
types: (1) Discovery of potential association bugs with
limited a priori knowledge of what bugs an application
may present, (2) Testing for one or a few suspected asso-
ciation bugs (e.g., higher prices or denied loans), and (3)
Error profiling of a machine learning (ML) algorithm
over a user population, that is, identifying any subpopu-
lations with which erroneous predictions are disparately
associated. In conjunction with these core investigation
types, FairTest can assist in preliminary debugging of un-
covered association bugs, by allowing a developer to rule
out potential confounders for observed unfair effects.

We used FairTest to test for disparate impact, discover
offensive labeling, and profile algorithmic errors in six
applications and datasets, including: a simulation of
Staples’ pricing scheme fed by U.S. census data [50], a
movie recommender, a predictive health application, and
an image tagger. We found association bugs in all cases,
demonstrating the critical need for tools like FairTest.

Overall we bring the following contributions:

1. We introduce unwarranted associations, a type of
bug specific to emerging data-driven applications.
While prior works have raised the broad concern
of unintended, unfair consequences of algorithmic
decision making, our definition is more general and
broadly applicable than previous fairness definitions.

2. We design, implement, and evaluate FairTest, the first
testing tool for unwarranted associations. It uniquely
supports: (1) multiple association metrics as required
by various applications and use cases, (2) efficient
detection of association bugs in user subpopulations,
(3) rigorous statistical result assessments, and (4) to
some extent debugging of discovered associations.

3. We develop a guided decision tree construction algo-

rithm, which “zooms into” a user population to find
meaningful subpopulations strongly affected by a bug.

4. We integrate FairTest into SciPy in support of
association bug discovery, testing, and error profiling.

5. We demonstrate FairTest’s three investigation types
on six real-world applications and datasets, revealing
the widespread occurrence of association bugs, as
well as FairTest’s effectiveness in detecting them.

6. We will release FairTest’s source code on publication.

2 Motivation and Goals
Our research aims to: (1) demonstrate the importance
of testing for unwarranted associations in data-driven
applications, and (2) develop tools to assist programmers
in finding and investigating such bugs.
2.1 Motivating Examples

Typical examples of unwarranted associations in the
related literature focus on high-stakes processes where
differential treatment or impact is punishable by law,
e.g., hiring, providing credit, or offering housing. While
such sensitive applications indeed require close inspec-
tion, we argue that any application that ingests and pro-
cesses user data deserves scrutiny for association bugs.
We present three examples that underscore the diverse
contexts in which unwarranted associations can arise,
and illustrate the capabilities needed to detect them:

• Google Photos. Google’s recently released Photos ap-
plication includes an ML-based image tagging sys-
tem. Users found that Photos produced offensive la-
bels, tagging black people in photos as “gorillas” [19].
Google promptly apologized for the bug, saying that
“This is 100% not OK,” and promised to fix it [19].

• Staples’ differential pricing scheme. The office retailer
Staples implemented what seemed a rational differ-
ential pricing scheme for online purchases: users lo-
cated within approximately 20 miles of a rival store
(e.g., Office Depot) were often offered a discounted
price. Investigators at the Wall Street Journal found
that the pricing scheme had a negative disparate im-
pact on low-income customers [52]. The investigators
called the situation an “unintended side-effect” [52].

• Healthcare prediction. Based on real-world data and
a winning approach from the Heritage Health Prize
Competition [25], we built a model using past health-
care claims to predict a user’s number of hospital vis-
its in the next year. Using FairTest, we found that al-
though the model is highly accurate overall, its errors
are unevenly concentrated on elderly users, especially
in subpopulations with certain pre-existing conditions.
If an insurance company used this algorithm to tune in-
surance premiums, they might involuntarily discrimi-
nate against elderly people within these populations.
These examples illustrate the wide variety of unwar-

ranted associations and the importance of proactively

2

testing for and remedying them before they can harm
users or embarrass companies. These settings also
illustrate the major capabilities that are needed to
address these concerns. Google’s Photos case shows that
unwarranted associations can be difficult to anticipate,
and therefore that tools are required for discovery of
such bugs. Staples’ mishap illustrates the need, given a
possible or suspected discriminatory effect, for tools that
enable rigorous testing of its presence, extent, and im-
pact. Finally, our healthcare prediction example shows
that rather than yielding outcomes that are discrimi-
natory in their content, an application can disparately
impact certain subpopulations in the form of uneven
error rates. This highlights the need for principled error
profiling of ML algorithms and dependent applications.

Our goal, and insight, in this paper is to develop a
comprehensive system design, together with the neces-
sary definitional support, to enable investigations of all
of these different types of unwarranted associations.
2.2 Candidate Approaches and Related Work

A number of intuitive approaches may appear appli-
cable to discover, debug, or prevent association bugs.
Upon closer examination, we find none of these to
be sufficient. First, a developer might explicitly omit
protected user attributes, such as gender or race, from an
application’s inputs in an attempt to avoid discrimination
along these axes. Unfortunately, this is insufficient,
as subtle associations between protected attributes and
actual program inputs (e.g., locations, preferences) may
result in indirect biases. For example, Staples’ algorithm
did not explicitly ingest information about the socio-
economic status of its customers; yet location surfaced
as an unanticipated proxy for this sensitive information.

Second, a programmer might inspect discriminatory
effects only at a coarse-grained level, i.e., over a global
population of application users. For instance, she could
check whether her pricing algorithm gives similar prices,
on average, to low-income and high-income users across
the U.S. However, disparities observed over a population
may differ from, or even contradict, those found in
smaller subsets, an effect known as Simpson’s paradox.
The 1973 Berkeley admissions [2] are a famous example:
admission rates appeared to disfavor women, yet indi-
vidual departments exhibited either no bias or a reverse
bias. Incidentally, the adverse effects of Staples’ pricing
scheme also varied significantly from state to state [52].

Third, a programmer might look for disparate effects
in a few subpopulations of interest (e.g., due to historical
relevance). This appears to be a common practice
among discrimination watchdogs. Unfortunately, this
approach is neither systematic nor scalable: even for
datasets with a few dimensions, the number of possible
subpopulations can be impractically large, and manual
inspection of a few may miss important effects.

Fourth, debugging the ML component in an appli-
cation is often conducted in an ad hoc fashion, with
the ML practitioner manually employing exploratory
data analysis to understand data features and modeling
errors [24, 29, 40, 41]. Applying these practices to our
use cases is insufficient. A challenge that remains is
the systematic inspection of many combinations of
features that may define meaningful subpopulations.
Existing automated tools for deriving subpopulations
(e.g., clustering algorithms [24]) are not guided by
the measures that define the potential discriminatory
effects, and do not always produce interpretable sub-
populations. Although some learning methods allow
post-learning introspection (e.g., Random Forests [5]),
not all applications use such methods, and hence an
algorithm-independent method is desirable.

Finally, the emerging “algorithmic fairness” field aims
to develop methods to detect or avoid discrimination
in data-driven applications. Our study of this literature
reveals some serious limitations:

At a foundational level, we find a proliferation of
fairness definitions, each with at least one of three
major drawbacks: (1) They apply only to simple binary
(protected) attributes, e.g., favored and disfavored sta-
tus [7, 16, 20, 30, 31, 38, 42, 47, 48, 56, 57], or are instead
difficult to test using a sample [12]; (2) They ignore
disparities in user subpopulations [7, 16, 30–32, 57];
(3) They fail to consider reasonable explanations
that may negate the significance of an associa-
tion [7, 16, 30–32, 38, 42] (e.g., a movie recommender
may suggest poor-quality movies to a subgroup, but that
may be explained by the group members’ preferences).

At a system design level, the fragmentation of incom-
plete fairness definitions leads to designs with limited ap-
plicability and low prospects for real-world adoption. In-
deed, most papers in this space report experimentation on
just one or two small datasets [7,12,20,30–32,47,48,57].
No exploration exists for challenging systems issues,
such as building a generic system that supports many
applications and investigation types, ensuring ease of
use for programmers, allowing debugging of detected
associations, or scaling to large datasets.

Detailed discussion of related work is in Appendix B.
2.3 Design Goals

We designed the FairTest testing toolkit for unwar-
ranted associations informed by the preceding examples
and limitations of prior approaches. Its primary goal is
to detect unwarranted associations by supporting three
core types of investigations: (1) Testing for one or a few
suspected association bugs (e.g., higher prices or denied
loans for certain populations), in order to discover any
subpopulations disparately impacted by these potential
bugs; (2) Discovery of potential association bugs; that
is, identifying unanticipated, questionable associations

3

(such as labels associated with particular subpopulations)
with little a priori knowledge of what bugs an application
may present or what subpopulations these bugs may
affect; and (3) Error profiling of a ML algorithm over a
user population, that is, identifying any subpopulations
with which erroneous algorithmic outputs are disparately
associated; while a form of testing, error profiling treats
not application outputs, but application accuracy.

FairTest must meet the following requirements:
• Generic and broadly applicable: FairTest’s design, as

well as the definitional foundations it relies upon, must
be generic and broadly applicable.

• Ease of use: FairTest must not assume that data-driven
programmers are expert statisticians. It must there-
fore: (1) provide complete and directly interpretable
information for every association bug, including rig-
orous measures of statistical significance and of effect
size, and (2) filter and rank bugs by their “importance”
to help programmers prioritize their efforts.

• Detect unwarranted associations of varied impor-
tance: The “importance” of an association bug may be
measured either by the size of the population it affects
(e.g., many people may get poor movie recommenda-
tions) or by the strength of its effect (regardless of af-
fected population size). FairTest must discover both
systematic discrimination over large populations and
severe disparities exhibited in specific subpopulations.

• Some support for debugging: In addition to primitives
for association bug detection, FairTest aims to provide
some basic, if incomplete, primitives to help program-
mers narrow down the root cause of these bugs.

2.4 Threat Model and Assumptions
FairTest is designed to aid developers in discovering

association bugs. It is thus intended to be used by honest
developers to study honestly designed applications.
Applications do not intentionally induce unwarranted as-
sociations or seek to conceal associations from FairTest.

FairTest’s debugging is restricted to identifying any
confounding factors that might explain an association
bug (e.g., in the Berkeley admissions [2], the department
to which a person applied to was a confounder). While
this is valuable, confounders are not the only cause of
association bugs. Other potential causes, such as insuffi-
cient training data for an ML algorithm, are out of scope.

While FairTest provides abstractions for association
bug detection and to some extent debugging, it offers
no explicit support for remediation. Indeed, traditional
testing tools (e.g., for functionality or performance bugs)
rarely prescribe fixes for the bugs they reveal; developers
use them to find and understand bugs, and then develop
their own fixes, which can range from trivial changes
to major application restructuring. In practice, however,
with FairTest, as with other testing tools, fixes often be-
come apparent once a developer understands a bug. We

show throughout the paper, and in §6.3 in particular,
cases where debugging yields clear remediation paths.

A key assumption in FairTest is that a developer
will have at her disposal a set of protected attributes
(e.g., gender, race, income level) for her users. For some
of these attributes, it is plausible that programmers have
this information from user profiles. In other cases, public
datasets, such as the U.S. census data, can be leveraged
to test for unwarranted associations on attributes that
the programmer lacks (see §3.1). Finally, §5 discusses a
deployment model that relaxes the above assumption: an
architecture where a trusted auditor (e.g., EFF) collects
protected attributes from a large user population and
runs FairTest on programmers’ behalf. In this case, the
auditor is fully trusted by programmers and users.

Regardless of the data’s source, we assume that it is
representative of an application’s user population and
not tainted by selection bias. Moreover, while we aim
to discover associations in smaller subpopulations, we
do not aim to discover tiny-scale associations (e.g., at
the level of an individual). An application may behave
poorly for a specific user, yet FairTest will not detect that.

3 FairTest Overview
Fig.1(a) shows the FairTest architecture. At a high level,
the data-driven application – the object of FairTest’s
investigations – takes inputs from each user, such as lo-
cations or clicks, and returns a set of outputs to the user.
To run an investigation, the developer supplies FairTest
with a dataset consisting of a number of attributes from
application users, along with the outputs (or properties
of the outputs) for those users. FairTest analyzes this
data and returns an association report. The report lists
statistically significant associations that FairTest has
found between specified protected attributes S (such as
race or gender) and the outputs O. The programmer then
inspects the report and determines which reported asso-
ciations are real bugs that require fixing and which are
admissible effects in the context of her company’s poli-
cies. After giving a concrete example of an association
report, we detail FairTest’s architecture and algorithm in
the remainder of this section. §4 then details our design.
3.1 Association Report Example

Suppose that Staples’ programmers wished to inspect
their pricing scheme’s impact on the users before deploy-
ing it in production (e.g., out of principle or to avoid bad
publicity). To do so, they could use U.S. census statis-
tics [50] to emulate users with realistic demographics
visiting their website from various locations. They would
run their location-based pricing scheme for those users
and use FairTest’s Testing investigation to test for dis-
parate impact on race, income, or other sensitive groups.

We ran such an investigation on a simulated pricing
scheme akin to Staples’, which gives discounts to users

4

FairTest

Data-driven
Application

user inputs
(location, clicks...)

outputs to users (O)
(prices, labels, recommendations...)

protected
attributes (S)

(race, gender,
age...)

association
bug report

to programmer
(see Fig. 2)

context
attributes (X)

(ZIP code, job...)

explanatory
attributes (E)

(qualifications,
constraints...)

(a) Architecture (b) Basic Algorithm

~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~

properties of the outputs
(e.g., correct or erroneous)

Input: Data D = (S, X, E, O);
Output: Association bug report.

1. Split D into Dtrain and Dtest.
2. for each protected attribute Si in S:
    2.1. Using Dtrain, derive association contexts 
           by building a decision tree on X guided 
           by the value of association metric M 
           between Si and O.
    2.2. for each context:
           Using Dtest, compute confidence 
           interval (CI) and statistical significance
           (p-value) for M in this context.
3. Correct CIs, p-values for multiple testing 
    across all protected attributes and contexts.
4. for each protected attribute Si in S: 
    4.1. Filter results on p-value.
    4.2. Rank results on CIs.
5. return association bugs for each Si.

MI correlation regressionratio,diff

Association Metrics

exact stats filter & rankapprox.stats

Statistical Validation and Ranking

holdout datatraining data

Dataset Management

Association Context Discovery
guided decision tree

Fig. 1: FairTest Architecture and Algorithm. (a) Grey boxes denote FairTest components. Rounded boxes denote specific mechanisms. White
rounded boxes denote extensibility points; transparent rounded boxes denote core, generic mechanisms in FairTest. (b) S, X , E denote protected,
context, and explanatory attributes, respectively; O denotes outputs. See (a) for examples of these attributes.

Report of associations of O=Price on Si=Income:
Association metric: norm. mutual information (NMI).
Global Population of size 494,436
p-value = 3.34e-10 ; NMI = [0.0001, 0.0005]
Price Income <$50K Income >=$50K Total
High 15301 (6%) 13867 (6%) 29168 (6%)
Low 234167(94%) 231101(94%) 465268 (94%)
Total 249468(50%) 244968(50%) 494436(100%)

1. Subpopulation of size 23,532
Context = State: CA, Race: White
p-value = 2.31e-24 ; NMI = [0.0051, 0.0203]

Price Income <$50K Income >=$50K Total
High 606 (8%) 691 (4%) 1297 (6%)
Low 7116(92%) 15119(96%) 22235 (94%)
Total 7722(33%) 15810(67%) 23532(100%)

2. Subpopulation of size 2,198
Context = State: NY, Race: Black, Gender: Male
p-value = 7.72e-05 ; NMI = [0.0040, 0.0975]

Price Income <$50K Income >=$50K Total
High 52 (4%) 8 (1%) 60 (3%)
Low 1201(96%) 937(99%) 2138 (97%)
Total 1253(57%) 945(43%) 2198(100%)

... more entries (sorted by descending NMI) ...

Fig. 2: Sample Association Bug Report. Shows the full population
and two highly-affected subpopulations for a Testing investigation of
suspected disparate impact in a Staples pricing simulation.

located within 20 miles of a competing OfficeDepot
store. Fig.2 shows part of FairTest’s bug report generated
by testing for suspected differential pricing based on
income; similar reports were generated when testing on
other attributes, such as race (see Appendix A.1). The re-
port lists some of the statistically significant associations
discovered between protected attribute ‘income’ and
output ‘price’ in various subpopulations. The strength
of the association is measured with normalized mutual
information (NMI), one of several measures of statistical
dependence implemented in FairTest (details are in §4.2).

The report shows three populations: the global
population is first, followed by the two discovered sub-
populations exhibiting the strongest disparities (highest
NMI). The subpopulations are defined by user attributes:
white people in California (first subpopulation) and black
men in New York (second subpopulation). For each
(sub)population, FairTest reports various statistical infor-
mation: a p-value (a measure of statistical significance,

with a value below 5% generally considered statistically
significant), a confidence interval for the NMI metric,
and a contingency table that summarizes the frequency
distribution of the outputs over the (sub)population.

The contingency tables are particularly relevant for
interpretation of the results. Here is how to read the en-
tries in these tables. Focusing on the first subpopulation:
among California’s white population (23,532 people
in our test set), 7,722 (or 33%) have an income below
$50K. Out of these 7,722 users, 606 (or 8%) were given
the high price and the rest (92%) were given a discount.

The programmer can then interpret the report as
follows: “At global U.S. population level, the disparate-
impact of my pricing algorithm against lower-income
people is nearly zero (NMI is close to zero for the
global population, and the contingency table shows
that low-income and high-income users receive higher
prices in roughly similar proportion, 6%). However, the
disparate impact is much stronger among white people
in California (first subpopulation), where about 8% of
lower-income people get higher prices vs. only 4% of
higher-income people. Strong disparate impact also ex-
ists for black men in New York (second subpopulation),
where 4% of lower-income black men get higher prices
vs. 1% for higher-income black men.” As remediation,
the programmer might decide to alter her pricing scheme,
e.g., to disable price tuning in affected regions, or to take
into account publicly available statistics from various
areas when deciding prices for people from those areas.
3.2 Architecture

Returning to the architecture (Fig.1(a)), FairTest
expects three types of user attributes as inputs: (1) Pro-
tected attributes, S, are discrimination-sensitive features
(e.g., race, gender, age) on which FairTest will look for
associations. (2) Context attributes, X , are dimensions
along which FairTest will split the user population
to identify smaller contexts with strong associations
between outputs and protected attributes. These include

5



user attributes that the programmer is knowingly using
in his application (e.g., location in the Staples pricing,
or health history in the health application) and may also
include protected attributes. (3) Explanatory attributes,
E, are user properties on which the developer deems it
acceptable to differentiate, even if that leads to apparent
discrimination on protected attributes. FairTest will ex-
plicitly avoid looking for bugs defined by these attributes.
Explanatory attributes (described in §4.6) can be used
to debug previously found association bugs (e.g., to rule
out potential causes) or to distinguish unintended side-
effects from consequences of an application requirement.
While at least one protected attribute must be specified,
explanatory and context attributes may be omitted.

FairTest’s core (FairTest box in Fig.1(a)), which ana-
lyzes all the inputs has four architectural components:

1. The Association Metrics module defines an extensible
set of metrics for associations. We incorporate five de-
fault metrics (defined in §4.2), chosen to support a va-
riety of applications and investigations. As we show,
switching between investigation types in FairTest sim-
ply requires selecting a different association metric.

2. The Association Context Discovery module imple-
ments a generic mechanism to identify subpopulations
that exhibit particularly high associations (as mea-
sured by an appropriate metric) between an output and
a protected attribute. To ensure that the derived associ-
ation contexts are meaningful and easily interpretable,
our mechanism builds a decision tree that recursively
splits the user population into smaller, well-defined
groups, with increasingly strong associations. We call
this mechanism guided decision tree construction, and
it constitutes a core technical contribution in our paper.

3. The Statistical Validation and Ranking module
computes the statistical significance and association
strength for each subpopulation (context) derived
by the Context Discovery module. It incorporates
an extensible set of statistical measurements, each
appropriate for a particular association metric. It
further filters associations by statistical significance,
ranks them by effect size, and produces the bug report.

4. The Dataset Management module collects the data
input by the developer, and manages data holdout
(i.e., test sets) in order to guarantee statistical validity
of FairTest’s results across one or more investigations.

3.3 FairTest Algorithm
Fig.1(b) shows FairTest’s basic algorithm, which

combines all of its inputs and modules in four steps:
Step 1: Given a dataset, D = {(S,X,E,O)}, FairTest
first splits it into a training set, Dtrain and a testing set,
Dtest. Step 2: For each protected attribute Si in S, the
Association Context Discovery module uses Dtrain to
split the user population into meaningful subpopulations
based on context attributes, X; its goal is to maximize

the association between Si and O in the discovered
contexts, using our guided decision-tree construction
algorithm (§4.3). The association metric used depends
on the investigation type, the presence of explanatory
attributes E, and Si and O’s data types; by default,
FairTest picks a suitable metric from those it supports
(§4.2). For each discovered association, the Statistical
Validation and Ranking module (§4.4) assesses the bug’s
validity on Dtest using p-values and confidence intervals
(CIs) for effect sizes. A p-value here results from testing
for the null hypothesis that an association bug is not
present. A small p-value supports the conclusion that
the bug in fact exists. Step 3: We correct p-values and
CIs to account for the multiple comparisons problem
that arises when making many statistical inferences.
Step 4: To prioritize developers’ efforts, we filter and
rank association bugs (§4.4) to produce a report that
includes all statistically significant associations, starting
with the most affected subpopulations.

4 Detailed Design
This section details FairTest’s design. We first give a
more formal definition of the notion of unwarranted as-
sociation (§4.1) and then describe FairTest’s architectural
modules and investigation features (§4.2-4.7).
4.1 Unwarranted Associations

As discussed in §2.2, the algorithmic fairness literature
contains numerous and fragmented definitions for what
constitutes “fairness” or “discrimination.” Existing def-
initions have limited applicability, miss important con-
siderations of utility and application requirements, and
often rely upon difficult to establish thresholds for what
constitutes “discrimination”. A key foundational contri-
bution in this paper is thus our development of a generic
and broadly applicable concept, unwarranted associa-
tions, which encompasses broad classes of unintended
unfair or biased side-effects of data-driven algorithms.

We define an unwarranted association as any sta-
tistically significant association between a protected
attribute (such as gender or race) and an algorithm out-
come (such as a price, a hiring decision, or an error rate)
that cannot be explained by any factor that is deemed as
acceptable (e.g., a natural user inclination toward some
class of products, an application requirement, etc.).

This definition is objective, broadly applicable, and
rooted in legal discrimination practice. For example, in
U.S. law, a ratio of 4/5 for hiring rates of two groups is
generally considered discriminatory, but lower effects
may also qualify if statistically significant (and higher ef-
fects may be ignored if statistically insignificant) [14]. In
addition, the notion of explanatory factors encompasses
the legal notion of business necessity, where differential
treatment of two groups is deemed acceptable if the
differentiation can be shown to arise as a consequence of

6



Metric Description When to Use
Binary Ratio /
Difference

Compares probabilities of a
single output for two groups.

Binary S,O

Mutual Infor-
mation (MI)

General dependence measure
for two discrete variables.

Categorical S,O

Pearson Corre-
lation (CORR)

Measures linear dependence
between two scalar variables.

Scalar S,O; often
for Error Profiling

Regression For labeled outputs, measure
associations for each label.

High dimension O;
always for Discovery

Table 1: FairTest’s Canonical Association Metrics.

a fundamental business need. Appendix C gives further
context for our definition from U.S. discrimination law.

The notion of statistical association is general and
objective: it is any relationship between two measured
quantities that renders them statistically dependent [51].
There are many metrics to measure association, each
best suited to different contexts. After review, we chose
a canonical set that supports a wide range of use cases.
4.2 Association Metrics

Table 1 shows the five canonical metrics supported by
FairTest. They can be split into three categories, based
on the types of a protected attribute S and output O:
• Frequency Distribution Metrics: The association
between categorical S and O (with few possible values)
can be represented as a contingency table that displays
the frequency distribution of these variables. In prior
work, such tables were used to define ratio and difference
metrics for binary variables [7,16,20,30,31,38,42,47,48,
57], but these are difficult to extend to non-binary classes
of protected attributes [12]. In general cases, we summa-
rize the association with mutual information (MI), the
standard information-theoretic measure of dependence.
We use a normalized version of MI (NMI) to compare ef-
fects across multiple associations on the same variables.
• Correlation: Measuring dependence of scalar variables
(e.g., with MI [44]) is hard, so it is common to consider
specialized relationships for such variables. Pearson’s
correlation measures the strength of linear associations
between O and S, which may exist even for non-linearly
related variables. These measures are often robust and
broadly interpretable [46]. Note that a finding of zero
correlation does not imply independence. However, as
our aim is not to verify independence, and as we value
interpretability, Pearson’s correlation is a natural fit.
• Regression: High-dimensional output spaces occur
in many use-cases, such as for applications that assign
tags or labels to users, where it is not known a priori
which specific tag/label to test for associations (see the
Discovery investigation examples in §2.1). For these,
we introduce a metric based on regression. At a high
level, we model the relationship between the protected
attribute S and a large number of dependent output
labels O with a regression model (logistic or linear).
This yields a regression coefficient for each label, with
which we can estimate that label’s association with S.

Algorithm 1 Association-Guided Decision-Tree Construction
We build increasingly specific contexts with increasingly stronger
associations, by recursively splitting the data upon the user attribute
that maximizes the average association over derived contexts. Contexts
are defined by predicates P over attributes X (i.e., a path in the tree).
Require: MIN SIZE . Minimum size of a context
Require: MAX DEPTH . Maximum tree depth
Require: METRIC . Association metric

function FINDCONTEXTS(D = {S,X,E,O}, P = ∅)
Create an association context P
if |D| < MIN SIZE or |P| ≥ MAX DEPTH then

return
end if
for Xi ∈X do

D← partition of D based on the value of Xi

if ∃Di ∈ D : METRIC(Di) > METRIC(D) then
Score←

∑
Di∈D

METRIC(Di)/|D| . Avg. association

end if
end for
if no partition yields a higher association score then

return
end if
Xbest,Dbest ← partition with highest score
for Di ∈ Dbest do

V ← values taken by Xbest in Di

FINDCONTEXTS(Di, P ∪ {Xbest ∈ V })
end for

end function

To measure associations in the presence of an explana-
tory attribute E, we extend each of the above metrics to
measure the conditional association of S and O, given
E. We thus quantify the average association between S
and O that remains after controlling for E (see §4.6).
4.3 Association Context Discovery

A powerful feature in FairTest is its ability to ef-
ficiently “zoom into” a user population to discover
subpopulations particularly affected by association bugs.
This is important because strong associations may man-
ifest only inside smaller groups, even if no effects are
observed at full population level. In prior work, finding
such bugs has required uninformed exhaustive enumera-
tion of meaningful subpopulations, leading to a number
of contexts either exponential in the feature space [47,48]
or linear in the user space [38]. These approaches raise
two concerns: (1) They require making a large number
of statistical inferences, thus providing only weak guar-
antees on the false discovery rate. (2) They sacrifice the
ability to discover small subpopulations (e.g., a few hun-
dred users), even if these exhibit the highest associations.

To effectively identify and investigate hidden associa-
tion bugs, we develop a novel partitioning scheme, called
guided decision-tree construction, which efficiently finds
subpopulations that exhibit the strongest associations.
In contrast to prior work, our method generates only
a constant number of contexts, while aggressively
searching for the smaller, most affected populations.

Alg.1 shows our algorithm. Inspired by decision-tree
learning [45], it takes a new perspective in our context.
While traditional tree-learning mechanisms greedily

7



optimize some measure of target homogeneity (e.g., Gini
impurity), our algorithm actively maximizes some asso-
ciation metric between protected attributes and outputs.

The algorithm works by selecting a splitting rule,
based on an attribute Xi ∈ X , so as to split the dataset
into subsets with highest average association between
S and O. If Xi is continuous, we split the available
data into two subsets, based on some threshold; if Xi is
categorical, we split the data into one subset per value
of Xi. We only consider a split if it yields at least
one sub-context with a higher association than the one
measured over the current population. We then recur-
sively apply this process on each subset derived from
the highest scoring split. This approach: (1) permits use
of any association metric; (2) produces simply-defined
and interpretable subpopulations; and (3) aggressively
searches for subpopulations with strong associations
using just scalable/distributable computations [39].

We additionally employ well-known techniques for
preventing this tree construction from overfitting the
training data [45], such as bounding the tree’s depth and
pruning very small subpopulations (< 100 members).

4.4 Statistical Validation and Prioritization
Having discovered contexts that exhibit potential asso-

ciation bugs, we must validate and prioritize them before
reporting them to developers. Validation is needed be-
cause we explicitly built the contexts over a user sample
(Dtrain) so as to maximize associations. We validate bugs
on an independent sample, the test data (Dtest).

We use distinct notions of significance for bug
validation and prioritization. For validation, we use
statistical significance based on hypothesis testing: a bug
is significant if its manifestation in the test set is unlikely
under the “null hypothesis” (i.e., the association between
S and O is null). This is quantified by the p-value for a
test. For prioritization, we use effect size, i.e., the actual
value of the association metric, estimated by means of a
confidence interval (CI). FairTest incorporates statistical
methods for computing p-values and CIs for all metrics
in §4.2; for small samples, we use generic permutation
tests [15] and bootstraps [13] instead of approximations.
We apply Holm-Bonferroni corrections [26] to the
p-values and CIs to ensure their simultaneous validity.

With these concepts, bug report generation works as
follows: We filter out contexts with corrected p-values
>0.05. We rank the remaining contexts by the lower
bounds of their corrected effect-size CIs. We only
include a context (e.g., white males in NY) if it exhibits
a stronger effect than the larger populations (e.g., males
in NY) that contain it. Eventually, the report (1) lists all
statistically significant associations (even weak ones, if
they affect large subpopulations) and (2) first displays
the most strongly affected subpopulations.

� �
class DataSource(D, budget) # Holds out one test set per budget unit.� �� �
class Investigation(DataSource,S,X,E,O,M={}) # Base investigation class.

# M stands for association metrics.
class Testing(DS,S,X,E,O,M) # Investigation subclass for testing.
class Discovery(DS,S,X,E,O,M,top k) # Subclass for discovery.

# Takes in number of outputs to consider in each context.
class ErrorProfiling(DS,S,X,E,O,M,groundTruth) # Subclass for error profile.

# Takes ground truth for a predictive output.� �� �
train(Investigations,maxDepth=5,minLeafSize=100)

# Derives putative association contexts for one/more investigations.
test(Investigations,conf=0.95) # Tests and corrects all associations.
report(Investigations,conf=0.95,outDir) # Filters, ranks, saves reports.� �� �
class Metric # Abstract class for association metrics.
Metric.computeStats(data, conf) # Calculates p-value and CI at given level.� �

Fig. 3: FairTest API. Data holdout (1st), investigation types (2nd),
methods to run investigations (3rd), API to implement for metrics (4th).

4.5 Investigations
The FairTest API exposed to developers is shown in

Fig. 3. A core Investigation class is subclassed by three
specific types, Testing, Discovery, and ErrorProfiling,
which constitute FairTest’s primitives for unwarranted
association detection. To run these, a developer first
gathers a set of user attributes and application outputs.
This data is encapsulated in a DataSource that holds out
one or more test sets for successive investigations (see
§4.7). We next describe how each investigation type
works; §6.3 shows how we use them in real applications.

Testing: This investigation type, our simplest and most
intuitive, is used to test for the presence and strength of
suspected associations. We used it in §3.1 to test for
disparate impact in Staples’ pricing scheme. A devel-
oper provides a dataset D = {(S,X,E,O)}. Using its
guided tree-construction mechanism, FairTest first finds
contexts with potential associations. By default, FairTest
selects a suitable association metric for the data types.
The developer calls the train method to initiate context
discovery, optionally tuning parameters for the size and
complexity of the resulting contexts. She calls test and
report to validate discovered bugs and produce reports.

Discovery: In some cases, such as the discriminatory
labeling in Google Photos (see §2.1), it may be hard to
anticipate which particular algorithm outputs (e.g., photo
labels) may exhibit unwarranted associations. A Testing
investigation is thus impractical, as one would need to
test for associations on each label separately. Discov-
ery lets developers search for associations over a large
number of outputs simultaneously. The insight is to use
the regression metric from §4.2 to efficiently estimate the
strength of the association between protected attributes
and each output label. We then select the labels that
exhibit the strongest associations (the number top k of
labels to select is tunable), and test each label individu-
ally using an appropriately chosen metric. These regres-
sions are executed at every step of the guided decision-
tree recursion, so at the end Discovery simultaneously
yields both subpopulations that are labeled differently by
the algorithm and the labels offered differentially to each

8



Report of associations of O=Admitted on Si=Gender,
conditioned on explanatory attribute E=Department:

Global Population of size 2,213
p-value = 7.98e-01 ; COND-DIFF = [-0.0382, 0.1055]
Admitted Female Male Total
No 615(68%) 680(52%) 1295 (59%)
Yes 295(32%) 623(48%) 918 (41%)
Total 910(41%) 1303(59%) 2213(100%)

* Department A: Population of size 490:
p-value = 4.34e-03 ; DIFF = [0.0649, 0.3464]
Admitted Female Male Total
No 9(15%) 161(37%) 170 (35%)
Yes 51(85%) 269(63%) 320 (65%)
Total 60(12%) 430(88%) 490(100%)

* Department B: Population of size 279:
p-value = 1.00e+00 ; DIFF = [-0.4172, 0.3704]
Admitted Female Male Total
No 3(30%) 93(35%) 96 (34%)
Yes 7(70%) 176(65%) 183 (66%)
Total 10 (4%) 269(96%) 279(100%)

* ... Departments C-F, all with high p-values ...

Fig. 4: Disparate Admission Rates in the Berkeley Dataset. Shows
a Testing investigation with explanatory attribute E = Department.
COND-DIFF is the binary difference metric (DIFF), conditioned on E.

subpopulation. In this sense, Discovery requires little a
priori knowledge of what could constitute an association
bug or what subpopulations it might affect.

Error Profiling: This is a type of Testing, where the
sought association is the uneven distribution of algorith-
mic errors among users. ErrorProfiling unveils which
populations are most affected by algorithmic mistakes,
which may help improve both the accuracy and fairness
of the algorithm, as we show for our healthcare predictor
(§6.3.1). ErrorProfiling takes as inputs algorithm predic-
tions and the corresponding ground truth, and computes
a suitable error metric to be tested for associations.
4.6 Debugging

While FairTest’s primary goal is detection of un-
warranted associations, we considered it important to
provide some basic support for debugging, or narrowing
down the cause of these bugs. To this end, we introduce
explanatory attributes, user properties that account for
an unfair effect, or on which it is deemed acceptable to
differentiate. For example, a company may decide that
giving discounts to loyal customers is admissible even if
this leads to a pricing bias against certain demographics.

A developer can use explanatory attributes in two
ways: (1) She can define user properties E that are know-
ingly necessary for the application. FairTest then explic-
itly avoids deriving associations that are accounted for
by these attributes, by measuring the dependence of pro-
tected attributes S and outputs O conditioned on E. (2)
After an initial investigation that reveals apparent unfair
effects, she may debug these associations by specifying
explanatory attributes that she believes are responsible
(i.e., confounders) for the observed behavior. FairTest
then recomputes conditional association metrics over the
same contexts discovered in the first investigation.

To illustrate the first use-case of explanatory at-
tributes, we examine the Berkeley graduate admissions

dataset, which contains admission decisions and gender
for 4,425 applicants [2]. As mentioned in §2.2, this data
exhibits a paradoxical effect: at full university level,
admissions appear to disfavor women, yet this bias is not
reflected in any department. We show how an analyst
could use FairTest to measure gender-disparities in ad-
mission rates, while allowing that each department may
have different gender demographics and admission rates.

The analyst defines ‘department’ as an explana-
tory attribute, to instruct FairTest to look for associations
only among applicants of the same department. She then
runs a Testing investigation. The report (Fig.4) clearly il-
lustrates the paradox: Over the full population, only 32%
of female applicants are admitted versus 48% of male ap-
plicants. Yet, the only department with a significant gen-
der disparity in admission rates (department ‘A’) actually
favors women. Incidentally, the difference in admission
rates conditioned on an applicant’s department is found
to not be statistically significant (the p-value is 0.798).
4.7 Dataset Management

Our decision to add debugging support in FairTest
raises subtle issues with significant (and quite unex-
pected) implications for system design. To debug an
association bug, developers must run multiple investiga-
tions, each informed by previous ones. The bug is de-
tected in an initial investigation, after which the devel-
oper runs a series of other analyses (e.g., with explana-
tory attributes) to narrow down the cause of the effect.
Because investigations use knowledge gained in previous
steps, it is incorrect from a statistical perspective to vali-
date them on the same test set as previous investigations.

The system design implications are significant. First,
FairTest cannot be a stateless library; it must manage the
dataset it is given for analysis across multiple investiga-
tions to enforce its correct use. Our current prototype
achieves this by having developers specify a budget B
(number of adaptive investigations they plan to run)
upfront, when they supply a dataset; it then splits the
dataset into B testing sets, each to be used for a single
investigation. Only B investigations are allowed on the
same dataset. The DataSource abstraction in FairTest’s
API (Fig.3) implements this functionality. More efficient
approaches have been proposed [11], but they all lead to
similar systems implications, restrictions, and interfaces.

Second, the number of investigations (B) a program-
mer can run on a given dataset is limited. This suggests
that the best deployment for FairTest is one where testing
sets are continuously replenished from production data.
Care must be taken when investigating static datasets.

5 Prototype and Deployments
We implemented a FairTest prototype in Python, to be
used as a standalone library or as a RESTful service. As
a library, our prototype’s workflows are designed to inte-

9



grate with Pandas, SciPy’s popular data analysis library,
allowing developers to incorporate FairTest into their
typical application testing process. Our service prototype
enables continuous monitoring for association bugs in
production systems. Developers register investigations
with the FairTest service and route user attributes and
outputs to it. FairTest runs investigations periodically
and sends reports to the developers. The monitoring ser-
vice continuously collects new data to replenish its test
sets, thereby supporting larger numbers of investigations
than the standalone library running on static datasets.

While FairTest is primarily designed for developers,
we believe that it is also valuable for social-data analysts
who wish to inspect datasets of public importance for
signs of discrimination. For example, the American
Civil Liberties Union (ACLU) and ProPublica have ex-
pressed interest in using FairTest to study social datasets
such as imprisonment records, traffic law enforcement
data, and school suspension data. They were particularly
compelled by our subpopulation discovery mechanisms,
which they believe can simplify and systematize their
processes. We showcase both the developer and social-
analyst use cases in §6.3 by running investigations on two
data-driven applications and one public social dataset.

One key question is where programmers can obtain the
data required to analyze their applications with FairTest.
Generally, we believe developers should use whatever
relevant user data they have available (which could
include gender, race, location) and feed it into FairTest
as protected or contextual attributes. Programmers can
also use public datasets to emulate realistic application
users (as we do for Staples, see §3.1). Finally, although
not yet implemented, we envision a deployment model
where a separate, trusted entity (such as the EFF, ACLU,
or a census organization) collects a wider variety of user
attributes, and offers the FairTest RESTful service to a
range of privacy-conscious programmers interested in in-
specting their applications for unwarranted associations.

6 Evaluation
Our evaluation addresses three questions: (Q1) Is
FairTest effective at detecting association bugs? (Q2) Is
it fast enough to be practical? and (Q3) Is it useful to
identify and to some extent debug association bugs in a
variety of applications? We use seven workloads:

• One tightly controlled microbenchmark, which we use
to evaluate FairTest’s bug detection abilities with a pri-
ory known ground truth for the associations.

• Four data-driven applications fed by public datasets:
(1) a simulator of Staples’ pricing scheme (as de-
scribed by the WSJ report [52]) fed by U.S. census
data; (2) a predictive healthcare application, based on
a winning method and data from the Heritage Health
Prize Competition [25]; (3) an image tagger based on

Caffe [28], fed by ImageNet [9]; and (4) a movie rec-
ommender trained over the MovieLens dataset [6].

• Two social datasets – the Adult Census dataset [36]
and the 1973 Berkeley Admissions dataset [2] – which
have been used in prior algorithmic fairness work.

Table 2 shows workload information: number of user-
s/attributes, investigations we ran, and metrics we used.
6.1 Detection Effectiveness (Q1)
Microbenchmark. Inspired by the Staples case, we cre-
ate a microbenchmark that lets us control the strength
and span of association bugs. We use U.S. Census [50]
data for gender, race, and income to generate≈ 1M syn-
thetic users. We begin with a “fair” algorithm that ran-
domly provides users with {0, 1}-output, independent of
income. We then plant disparities in certain subpopula-
tions (determined by location and race), so that income
level (high or low) implies a difference in output propor-
tions of size 2∆. For example, we would give output “1”
to 60% of high-income users and 40% of low-income
users (∆ = 10%), for white users in California. For var-
ious subpopulation sizes and effect sizes, we inject 10
such randomly chosen discrimination contexts into our
data and measure how many are discovered by FairTest.

Fig.5 shows FairTest’s discovery rate as we increase
population size and ∆. FairTest reliably detects strong
disparities that affect at least a few hundred users, as well
as effects as low as 2.5% in large contexts. However,
low effects in small contexts often go undetected due to
limited statistical evidence. In all cases, FairTest made
zero false discoveries (finding a disparity that we did not
introduce). Statistical testing lets us tightly control the
false discovery rate: at a confidence level of 95%, we
expect at most 5% false discoveries (after corrections).
Real-World Apps and Datasets. Table 2 reports the
number of association contexts found by FairTest in each
application. We show the number of potential bugs found
by the guided decision-tree mechanism, the number of
associations that are statistically significant after correct-
ing for multiple testing, and the number of bugs reported
to the developer (recall that we only report a context if
it exhibits a higher unfair effect than the larger subpopu-
lations that contain it). The size of the smallest reported
context is also shown (the largest reported context is the
full test-population). We do not have ground truth for
these real-world workloads, but our experience inspect-
ing these reports (detailed in §6.3) suggests that FairTest
detects discrimination contexts of a variety of sizes, all of
which appear accurate and revelatory for an investigator.

Results for the predictive healthcare application are for
an experiment with a follow-up debugging investigation
(see §6.3.1). As per §4.7, FairTest thus splits the dataset
in three: a train set and two separate test sets. We found
that FairTest would have reported the same bugs, had we
used all the data for a single investigation (i.e., with no

10



Association Contexts
Application Investig. Users Attributes Metric(s) Discovered Validated Reported Size of Smallest Reported
Microbenchmark T 988871 4 NMI n/a n/a n/a n/a
Staples Pricing T 988871 4 NMI 224 100 21 211
Predictive Healthcare EP 86359 128 NMI,CORR 33 33 2 91
Image Tagger D,T 2648 1 REG,DIFF 1 1 1 1324
Movie Recommender D,T,EP 6040 3 REG,DIFF,CORR 54 19 11 223
Adult Census T 48842 13 NMI 108 57 10 104
Berkeley Admission T 4425 2 DIFF 1 0 1 2213

Table 2: Workloads. Investigations: Discovery (D), Testing (T), ErrorProfiling (EP). Metrics: normalized mutual information (NMI), correlation
(CORR), binary difference (DIFF), regression (REG). For each application, we report the number of potential association contexts found by
FairTest’s context discovery mechanism, the number that were found to be statistically significant (p-value < 5%), and the number of reported bugs.

0

2

4

6

8

10

100 500 1000 2000 5000 10000 

∆=15%

∆=10% ∆=5%
∆=2.5%

#
 o

f 
D

is
co

v
er

ed
S

u
b

p
o

p
u

la
ti

o
n

s 
(o

f 
1

0
)

Subpopulation Size

Fig. 5: FairTest Effectiveness with Affected Subpopulation Size
and Effect Strength (∆). Number of contexts discovered out of the ten
we artificially inserted in 1M-user population. Average over 10 trials.

debugging). We further analyzed the effect of the budget
B on the number of discovered and reported bugs for the
Staples application. For budgets B of 2 and 3 (the train
set and test sets each contain a 1/(B + 1) fraction of the
data), we discover 168 and 125 contexts, respectively; of
these, we report 15 and 13 contexts, respectively. In both
cases, the most affected subpopulation is the same as the
one found for a budget B = 1. Thus, for this application,
FairTest can allow at least one or two follow-up analyses,
while preserving the main results reported to developers.
6.2 Performance (Q2)

We briefly discuss performance. Although its building
blocks (decision trees, statistical tests) admit efficient
and scalable implementations, our prototype does not
incorporate all available optimizations. Still, we find that
FairTest is fast enough for practical use. Fig.6 shows the
analysis time for each of our applications (top numbers),
broken down into: (1) the time spent on training to form
association hypotheses, and (2) the time spent on testing
and correcting these hypotheses. On a commodity laptop
(4-core Intel CPU @1.7GHz, 8GB RAM), the total
execution time ranges from 1-5 seconds for the smallest
datasets to 80 seconds for the largest (Staples, with 1M
users). For small datasets (Adult, Berkeley, Movies) we
often use bootstraps and permutation tests to compute
CIs and p-values in small contexts (≤1000 users); these
are expensive and subsume the training cost. For datasets
that yield larger contexts, we use faster, approximate
statistical methods, making the testing phase fast and the
training phase proportionally more expensive.
6.3 Investigation Experience (Q3)

To assess FairTest’s usefulness for developers, we
investigated unwarranted associations in all real-world
applications in Table 2. Our experience reveals that
FairTest: (1) discovers insightful and interpretable asso-
ciations and (2) assists programmers in debugging them.

0

25

50

75

100

Adult Berkeley Staples Health Tagger MovieRec

P
er

ce
n

ta
g

e 
o

f
 T

o
ta

l 
T

im
e train

test

37s 1s 61s 25s 4s 5s

Fig. 6: FairTest Performance. Total FairTest analysis time (labels
above bars) broken down into training and testing times (bars).

Specifically, we find interesting associations in all six
applications and datasets, and we deem as really trouble-
some our findings in five of them: (1) Staples pricing:
If applied uniformly in the U.S., the pricing scheme
yields not only income-based disparity, but also racial
discrimination, especially against Native Americans in
Alaska. (2) Predictive healthcare: Although the predic-
tor has good overall accuracy, its error unevenly affects
older patients; in this case, FairTest enables us to narrow
down the cause of the effect and identify remediations.
(3) Image tagger: The tagger associates certain, poten-
tially offensive labels with black people; all of these
labels are clear errors. (4) Movie recommender: Older
people get higher-rated movies than younger people;
FairTest reveals a natural explanation – that older people
tend to prefer war movies, which are rated higher than
the action movies that younger people prefer – hence in
this case, no bug occurs and no remediation is needed.
(5) Adult census: FairTest confirms previously reported
income disparities across gender and race and also dis-
covers previously unreported effects, e.g., strong gender
disparities among highly-educated people. (6) Berkeley
admissions: FairTest reveals Simpson’s paradox, as an
explanation for an apparent gender discrimination.

We detail three investigations: predictive healthcare,
image tagger, Adult dataset. Others are in Appendix A.

6.3.1 Predictive Healthcare
Our predictive health application uses methods

and data from the winners of the first milestone of the
Heritage Health Prize Competition [25,43]. The random-
forest based algorithm uses past healthcare claims to
predict a user’s number of hospital visits in the next
year (predictions are for log(1 + number of visits)). The
algorithm has low error overall (the average difference
between the true and predicted number of visits is 0.42),
but we want to study the error’s distribution among users.

Our study gives an end-to-end view of how FairTest
can be used to detect and debug unwarranted associa-

11



Report of associations of O=Abs. Error on Si=Age:
Global Population of size 28,930
p-value = 3.30e-179 ; CORR = [0.2057, 0.2432]

1. Subpopulation of size 6,252
Context = Urgent Care Treatments >= 1
p-value = 1.85e-141 ; CORR = [0.2724, 0.3492]

Fig. 7: Error Profile for Health Predictions. Shows the global
population and the subpopulation with highest effect size (correlation).
The plots visualize the correlation between age and prediction error,
for predictions of log(1 + number of visits). For each age-decade, we
display standard box plots (box from the 1st to 3rd quantile with a line
at the median and whiskers at 1.5 interquantile-ranges). The straight
green line depicts the best linear fit over the data.

tions, but also obtain hints for potential fixes. (1) We first
discover an association bug: the application has much
higher error rates for older than for younger people.
(2) We investigate why the bug arises: the bias can
be explained by lower prediction confidence for older
people. (3) From there, we suggest potential fixes, such
as only using high-confidence predictions. Our study
consists of two investigations (detection and debugging),
which we perform adaptively, each on its own test set.
Detection. We first use FairTest’s ErrorProfiling to ex-
amine associations between the algorithm’s prediction
error and a user’s age (scalar quantities, hence we use
correlation). The report (Fig.7) shows the error/age cor-
relations for the full user population and one subpopu-
lation with higher effect. We visualize correlation with
plots instead of contingency tables. Globally, predic-
tion error grows with age (correlation is positive and the
data shows a clear positive linear trend). This effect is
strongest for patients with prior urgent-care treatments.
In that context, the average error for patients of age 61-
99 is 1.07, compared to 0.33 for younger patients.

This finding is alarming, as such disparities could
cause quantifiable harms if, e.g., the algorithm is used
to adjust insurance premiums (one of the competition’s
motivations [25]). Hence we wish to further investigate
the causes of this accuracy loss for older patients, and get
insights into how to fix this fairness (and accuracy) bug.
Debugging. We use FairTest’s debugging abilities (ex-
planatory attributes) to verify a plausible cause for the
observed bias: The higher error for elderly patients could
be due to the high variance of the prediction target (the
number of hospital visits) for these users. To estimate the
variance in a patient’s target value, we train multiple pre-
dictors over random data subsets, and use these to infer

Report of associations of O=Abs. Error on Si=Age,
conditioned on explanatory attribute E=Confidence:

Global Population of size 28,930
p-value = 1.26e-13 ; COND-CORR = [0.1050, 0.1597]

* Low Confidence: Population of size 14,481
p-value = 2.27e-128 ; CORR = [0.1722, 0.2259]

* High Confidence: Population of size 14,449
p-value = 2.44e-13 ; CORR = [0.0377, 0.0934]

Fig. 8: Error Profile for Health Predictions using prediction
confidence as an explanatory attribute. Shows correlations between
prediction error and user age, broken down by prediction confidence.

prediction intervals for our algorithm’s outputs [54]. The
width of this interval is our estimate of the target’s vari-
ance. Low variance means high prediction confidence.

We run a new ErrorProfiling, with prediction confi-
dence as an explanatory attribute. Fig.8 shows the report.
Conditioning on prediction confidence weakens the cor-
relation in the full population. For users with low confi-
dence, the correlation of error on age is still positive and
significant, but for users with high confidence, the effect
is almost entirely gone. We omit results for users with an
urgent-care history, which are similar: the bias is almost
gone for patients with high-confidence predictions.
Remediation Strategies. These results imply an imme-
diate remediation strategy: when using this algorithm to,
say, tune insurance premiums, one should consider the
predictions’ confidence. For example, one might decide
to tune premiums only for high-confidence predictions.
This would result in about half of the users in our dataset
receiving customized premiums. One could also develop
a scheme that weighs any price increase by prediction
confidence. FairTest can then be used to test either of
these approaches for disparate impact on the population.
6.3.2 Image Tagger

Our second scenario showcases FairTest’s Discovery
capability from the perspective of the developer of an im-
age tagging system, who is willing to search for offensive
labeling among racial groups. To illustrate the process,
we inspect the labels produced by Caffe’s [28] imple-
mentation of R-CNN [18], a ready-to-use image tagger,
when applied to photos of people from ImageNet [9].
The tagger was itself trained on images from ImageNet
with 200 tags, including images of people. We tag 1,405
images of black people and 1,243 images of white peo-
ple with 5 labels each, and run a Discovery to find the 35
(top k) labels most strongly associated with each race.

12



Report of associations of O=Labels on Si=Race:
Global Population of size 1,324

* Labels associated with Race=Black:
Label Black White DIFF p-value
Cart 4% 0% [0.0137,0.0652] 3.31e-05
Drum 4% 0% [0.0095,0.0604] 3.83e-04
Helmet 8% 3% [0.0096,0.0888] 2.34e-03
Cattle 2% 0% [0.0037,0.0432] 4.73e-03

* Labels associated with Race=White:
Label Black White DIFF p-value
Face Powder 1% 10% [-0.1339,-0.0525] 5.60e-12
Maillot 4% 15% [-0.1590,-0.0575] 3.46e-10
Person 96% 99% [-0.0563,-0.0042] 6.06e-03
Lipstick 1% 4% [-0.0622,-0.0034] 1.03e-02

Fig. 9: Racial Label Associations in the Image Tagger. Shows par-
tial report of a Discovery (top k=35); the four most strongly associated
labels (for the binary difference metric DIFF) are shown for each race.

Fig.9 shows part of FairTest’s report. It lists the labels
most disparately applied to images of black people (first
table) and white people (second table); we show only
4 (of 35) labels per race. A developer could inspect
all top k labels and judge which ones deserve further
scrutiny. In Fig.9, the ‘cattle’ label might draw attention
due to its potentially negative connotation; upon inspec-
tion, we find that none of the tagged images depict farm
animals. Moreover, black people receive the ‘person’
tag less often, thus the model seems less accurate at de-
tecting them. Further work is needed to understand these
errors; the model was possibly under-trained for these
image types. While such analyses currently fall outside
FairTest’s scope, this example shows that FairTest is
effective at providing “leads” for investigation. It will
also help test the effectiveness of a remediation.
6.3.3 Adult Income Census Dataset

We next illustrate a second use case for FairTest:
analysts studying discrimination in social datasets. We
use the Adult dataset [36], which contains census data
and income levels (under or over $50K) for 48,842 U.S.
citizens. Some discriminatory effects have been noted in
prior algorithmic fairness works [16, 20, 32, 38, 56, 57].

Fig.10 shows parts of FairTest’s bug reports for Test-
ing for income biases on race (top) and gender (bottom).
We make three observations. First, FairTest confirms
previously known race and gender biases in the full
dataset: 88% of blacks have <$50K-income compared
to 75% of whites and 73% of Asians. Similarly, 89% of
women have low income compared to 70% of men.

Second, FairTest reveals new insights into these
biases. For race (top), black people are strongly
disfavored among people younger than 42 working
fewer than 55 hours a week – especially for federal
government employees. For gender (bottom), the groups
where women are most disadvantaged are: (1) older
people with 9-11 years of education and (2) (perhaps
surprisingly) people with a higher education (≥12 years
of education). We are unaware of any prior works in
the algorithmic fairness area that have reported these
particularly strong biases upon inspecting this dataset.

Third, as shown by the first context in Fig.10, FairTest

Report of associations of O=Income on Si=Race:
Global Population of size 24,421
p-value = 1.39e-53 ; NMI = [0.0063, 0.0139]
Income Asian Black ... White Total
<=50K 556(73%) 2061(88%) 15647(75%) 18640 (76%)
>50K 206(27%) 287(12%) 5238(25%) 5781 (24%)
Total 762 (3%) 2348(10%) ... 20885(86%) 24421(100%)

1. Subpopulation of size 341
Context = Age <= 42, Hours <= 55, Job: Fed-gov
p-value = 3.24e-03 ; NMI = [0.0085, 0.1310]
Income Asian Black ... White Total
<=50K 10(71%) 62(91%) 153(63%) 239 (70%)
>50K 4(29%) 6 (9%) 91(37%) 102 (30%)
Total 14 (4%) 68(20%) ... 244(72%) 341(100%)

2. Subpopulation of size 14,477
Context = Age <= 42, Hours <= 55
p-value = 7.50e-31 ; NMI = [0.0070, 0.0187]
Income Asian Black ... White Total
<=50K 362(79%) 1408(93%) 10113(83%) 12157 (84%)
>50K 97(21%) 101 (7%) 2098(17%) 2320 (16%)
Total 459 (3%) 1509(10%) ... 12211(84%) 14477(100%)

Report of associations of O=Income on Si=Gender:
Global Population of size 24,421
p-value = 1.44e-178 ; NMI = [0.0381, 0.0540]
Income Female Male Total
<=50K 7218(89%) 11422(70%) 18640 (76%)
>50K 876(11%) 4905(30%) 5781 (24%)
Total 8094(33%) 16327(67%) 24421(100%)

1. Subpopulation of size 1,371
Context = 9 <= Education <= 11, Age >= 47
p-value = 2.23e-35 ; NMI = [0.0529, 0.1442]
Income Female Male Total
<=50K 423(88%) 497(56%) 920 (67%)
>50K 57(12%) 394(44%) 451 (33%)
Total 480(35%) 891(65%) 1371(100%)

2. Subpopulation of size 6,791
Context = Education >= 12
p-value = 3.71e-124 ; NMI = [0.0517, 0.0883]
Income Female Male Total
<=50K 1594(76%) 2156(46%) 3750 (55%)
>50K 492(24%) 2549(54%) 3041 (45%)
Total 2086(31%) 4705(69%) 6791(100%)

Fig. 10: Disparate Impact Reports on Race (top) and Gender
(bottom) in the Adult Income Dataset. Shows the full population
and two subpopulations with higher disparate effects.

is capable of revealing even small contexts that show
particularly strong disparate effects. This capability has
attracted ACLU’s attention in particular, who wish to
“zoom into” their datasets to identify populations under
particular distress.

7 Conclusion
In a world where traditional notions of privacy are
increasingly challenged by the myriad of companies that
collect and analyze our data, we must rely on those com-
panies’ responsible use of our data to ensure our fair and
moral treatment. We have presented FairTest, a tool that
helps responsible, privacy-conscious developers to thor-
oughly check their data-driven applications for unfair,
discriminatory, or offensive user treatment. Designed
for ease-of-use by developers, FairTest enables scalable,
statistically rigorous investigation of unwarranted asso-
ciations between application outcomes and sensitive user
attributes, such as race or gender. Our study of six appli-
cations and datasets shows the broad utility of FairTest’s
three key investigation types: Discovery of association
bugs, Testing of suspected bugs, and ErrorProfiling.

13



References

[1] P. Barford, I. Canadi, D. Krushevskaja, Q. Ma, and
S. Muthukrishnan. Adscape: Harvesting and Analyzing
Online Display Ads. WWW ’14: Proceedings of the 23nd
international conference on World Wide Web, Apr. 2014.

[2] P. J. Bickel, E. A. Hammel, and J. W. O’Connell. Sex bias
in graduate admissions: Data from Berkeley. Science,
187(4175):398–404, 1975.

[3] T. Book and D. S. Wallach. An Empirical Study of
Mobile Ad Targeting. arXiv.org, 2015.

[4] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[5] L. Breiman. Looking inside the black box. Wald Lecture
II, 2002.

[6] D. Brent J., K. Joseph, H. Jon, G. Nathaniel, B. Al,
and R. John. Jump-starting movielens: User benefits of
starting a collaborative filtering system with ”dead date”.
Technical report, University of Minnesota, March 1998.

[7] T. Calders and S. Verwer. Three naive Bayes approaches
for discrimination-free classification. Data Mining and
Knowledge Discovery, 21(2):277–292, 2010.

[8] A. Datta, M. C. Tschantz, and A. Datta. Automated
experiments on ad privacy settings: A tale of opacity,
choice, and discrimination. In Proceedings of Privacy
Enhancing Technologies Symposium, 2015.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255.
IEEE, 2009.

[10] K. Dixit, M. Jha, S. Raskhodnikova, and A. Thakurta.
Testing the lipschitz property over product distributions
with applications to data privacy. In Proceedings of
the 10th Theory of Cryptography Conference, pages
418–436, 2013.

[11] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold,
and A. Roth. The reusable holdout: Preserving validity
in adaptive data analysis. Science, 349(6248):636–638,
2015.

[12] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and
R. Zemel. Fairness through awareness. In Proceedings
of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS ’12, pages 214–226, New York, NY,
USA, 2012. ACM.

[13] B. Efron. Bootstrap methods: Another look at the
jackknife. The Annals of Statistics, 7(1):1–26, 1979.

[14] Equal Employment Opportunity Commission. Infor-
mation on impact (§ 1607.4), Uniform Guidelines on
Employee Selection Procedure, 1978.

[15] M. D. Ernst. Permutation methods: A basis for exact
inference. Statistical Science, 19(4):676–685, 2004.

[16] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger,
and S. Venkatasubramanian. Certifying and removing
disparate impact. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’15, pages 259–268, New
York, NY, USA, 2015. ACM.

[17] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and
semantic segmentation. In Computer Vision and Pattern
Recognition, 2014.

[19] J. Guynn. Google photos labeled black people ’gorillas’.
USA Today, July 2015.

[20] S. Hajian and J. Domingo-Ferrer. A methodology for
direct and indirect discrimination prevention in data
mining. Knowledge and Data Engineering, IEEE
Transactions on, 25(7):1445–1459, 2013.

[21] A. Hannak, P. Sapiezynski, A. M. Kakhki, B. Krishna-
murthy, D. Lazer, A. Mislove, and C. Wilson. Measuring
personalization of web search. In WWW ’13: Pro-
ceedings of the 22nd international conference on World
Wide Web. International World Wide Web Conferences
Steering Committee, May 2013.

[22] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and
C. Wilson. Measuring Price Discrimination and Steering
on E-commerce Web Sites. IMC ’14: Proceedings
of the 14th ACM SIGCOMM conference on Internet
measurement, 2014.

[23] M. Hardt. How big data is unfair. Understanding sources
of unfairness in data driven decision making. https:
//medium.com/@mrtz/how-big-data-is-
unfair-9aa544d739de, September 2014.

[24] T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning. Springer, 2nd edition, 2009.

[25] Heritage Provider Network. Heritage Health Prize Com-
petition. http://www.heritagehealthprize.
com/c/hhp, 2012.

[26] S. Holm. A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics, 6(2):pp.
65–70, 1979.

[27] M. Jha and S. Raskhodnikova. Testing and reconstruction
of lipschitz functions with applications to data privacy.
SIAM Journal on Computing, 42(2):700–731, 2013.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[29] M. Kabra, A. Robie, and K. Branson. Understanding
classifier errors by examining influential neighbors. In
CVPR, 2015.

[30] F. Kamiran and T. Calders. Classifying without discrimi-
nating. In Computer, Control and Communication, 2009.
IC4 2009. 2nd International Conference on, pages 1–6.
IEEE, 2009.

[31] F. Kamiran, T. Calders, and M. Pechenizkiy. Discrim-
ination aware decision tree learning. In Data Mining
(ICDM), 2010 IEEE 10th International Conference on,
pages 869–874. IEEE, 2010.

[32] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma.
Fairness-aware classifier with prejudice remover regular-
izer. In Machine Learning and Knowledge Discovery in
Databases, pages 35–50. Springer, 2012.

14

https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de
https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de
https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de
http://www.heritagehealthprize.com/c/hhp
http://www.heritagehealthprize.com/c/hhp


[33] Y. Koren, R. Bell, and C. Volinsky. Matrix factoriza-
tion techniques for recommender systems. Computer,
42(8):30–37, 2009.

[34] M. Lecuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios,
R. Spahn, A. Chaintreau, and R. Geambasu. XRay:
Enhancing the Web’s Transparency with Differential
Correlation . In 23rd USENIX Security Symposium
(USENIX Security 14), San Diego, CA, 2014. USENIX
Association.

[35] M. Lecuyer, R. Spahn, Y. Spiliopoulos, A. Chaintreau,
R. Geambasu, and D. Hsu. Sunlight: fine-grained
targeting detection at scale with statistical confidence.
In Twenty-Second ACM Conference on Computer and
Communications Security, 2015.

[36] M. Lichman. UCI machine learning repository, 2013.

[37] B. Liu, A. Sheth, U. Weinsberg, J. Chandrashekar, and
R. Govindan. AdReveal: improving transparency into
online targeted advertising. In HotNets-XII: Proceedings
of the Twelfth ACM Workshop on Hot Topics in Networks.
ACM Request Permissions, Nov. 2013.

[38] B. T. Luong, S. Ruggieri, and F. Turini. k-NN as an
implementation of situation testing for discrimination
discovery and prevention. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 502–510. ACM, 2011.

[39] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkatara-
man, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen,
et al. Mllib: Machine learning in apache spark. arXiv
preprint arXiv:1505.06807, 2015.

[40] A. Ng. Advice for applying machine learning. http:
//cs229.stanford.edu/materials/ML-
advice.pdf, 2011.

[41] A. Ng. Machine learning system design.
https://d396qusza40orc.cloudfront.
net/ml/docs/slides/Lecture11.pdf, 2013.

[42] D. Pedreschi, S. Ruggieri, and F. Turini. Discrimination-
aware data mining. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 560–568. ACM, 2008.

[43] R. A. Phil Brierley, David Vogel. Heritage
Provider Network Health Prize. Round 1 Mile-
stone Prize. How We Did It – Team ‘Market
Makers’. https://www.kaggle.com/wiki/
HeritageMilestonePapers/file/Market%
20Makers-Milestone1DescriptionV21.pdf.

[44] B. Poczos, L. Xiong, and J. Schneider. Nonparametric
divergence estimation with applications to machine
learning on distributions. In Uncertainty in Artificial
Intelligence, 2011.

[45] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, 1993.

[46] J. L. Rodgers and W. A. Nicewander. Thirteen ways
to look at the correlation coefficient. The American
Statistician, 42(1):pp. 59–66, 1988.

[47] S. Ruggieri, D. Pedreschi, and F. Turini. Data mining
for discrimination discovery. ACM Transactions on
Knowledge Discovery from Data (TKDD), 4(2):9, 2010.

[48] S. Ruggieri, D. Pedreschi, and F. Turini. Integrating
induction and deduction for finding evidence of discrimi-
nation. Artificial Intelligence and Law, 18(1):1–43, 2010.

[49] L. Sweeney. Discrimination in online ad delivery. Queue,
11(3):10, 2013.

[50] United States Census Bureau. Easy stats. http://
www.census.gov/easystats/, September 2015.

[51] G. Upton and I. Cook. A dictionary of statistics, 2008.

[52] J. Valentino-DeVries, J. Singer-Vine, and A. Soltani.
Websites vary prices, deals based on users’ information.
The Wall Street Journal, December 2012.

[53] T. Vissers, N. Nikiforakis, N. Bielova, and W. Joosen.
Crying Wolf?On the Price Discrimination of Online
Airline Tickets. Proceedings of the 7th Hot Topics in
Privacy Enhancing Technologies (HotPETs 2014), pages
1–12, June 2014.

[54] S. Wager, T. Hastie, and B. Efron. Confidence intervals
for random forests: The jackknife and the infinitesimal
jackknife. The Journal of Machine Learning Research,
15(1):1625–1651, 2014.

[55] X. Xing, W. Meng, D. Doozan, N. Feamster, W. Lee,
and A. C. Snoeren. Exposing Inconsistent Web Search
Results with Bobble. Passive and Active Measurements
Conference, 2014.

[56] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork.
Learning fair representations. In Proceedings of the
30th International Conference on Machine Learning
(ICML-13), pages 325–333, 2013.

[57] I. Zliobaite, F. Kamiran, and T. Calders. Handling
conditional discrimination. In Data Mining (ICDM),
2011 IEEE 11th International Conference on, pages
992–1001. IEEE, 2011.

A Supplementary Investigations
A.1 Racial Biases in Staples Simulation
§3.1 describes our investigation of the income-

based discriminatory side-effects of a Staples-inspired
location-based pricing scheme. We observed a signif-
icant impact of lower-income people getting higher
prices, particularly among white people in California.
This section describes our investigation into the racial
and gender effects of that same scheme. On race, we
found that Native Americans are shown high prices in
about 19% of the cases, three times more than the popu-
lation average. Fig.11 shows the top of FairTest’s report
of pricing-race impact. Globally, the strongest negative
impact of the location-based pricing scheme is for Amer-
ican Indians and Alaska Natives, a minority that accounts
for less than 1% of the users in our dataset. At a finer
grain, the subpopulation with the strongest disparities
are low-income women in New York, with white users,
as well as the very few native Americans in this category,
being most affected by the location-based pricing. It is
interesting to note that among low-income New Yorkers,
disparities appear stronger for women than for men,
implying that the geographical distribution of genders
(for individual ethnic groups) is not completely uniform.

15

http://cs229.stanford.edu/materials/ML-advice.pdf
http://cs229.stanford.edu/materials/ML-advice.pdf
http://cs229.stanford.edu/materials/ML-advice.pdf
https://d396qusza40orc.cloudfront.net/ml/docs/slides/Lecture11.pdf
https://d396qusza40orc.cloudfront.net/ml/docs/slides/Lecture11.pdf
https://www.kaggle.com/wiki/HeritageMilestonePapers/file/Market%20Makers - Milestone 1 Description V2 1.pdf
https://www.kaggle.com/wiki/HeritageMilestonePapers/file/Market%20Makers - Milestone 1 Description V2 1.pdf
https://www.kaggle.com/wiki/HeritageMilestonePapers/file/Market%20Makers - Milestone 1 Description V2 1.pdf
http://www.census.gov/easystats/
http://www.census.gov/easystats/


Report of associations of O=Price on Si=Race:
Global Population of size 494,436
p-value = 2.31e-178 ; NMI = [0.0241, 0.0286]

Price Asian Black Hispanic American Indian & Alaska Native ... White Total
High 430 (2%) 977 (2%) 4013 (5%) 654(19%) 22544 (7%) 29168 (6%)
Low 23244(98%) 60629(98%) 82652(95%) 2879(81%) 286877(93%) 465268 (94%)
Total 23674 (5%) 61606(12%) 86665(18%) 3533 (1%) ... 309421(63%) 494436(100%)

1. Subpopulation of size 7,337
Context = Gender: Female, State: NY, Income: <50K
p-value = 4.73e-102 ; NMI = [0.0936, 0.1573]

Price Asian Black Hispanic American Indian & Alaska Native ... White Total
High 12 (2%) 17 (1%) 31 (2%) 5(14%) 493(15%) 566 (8%)
Low 512(98%) 1482(99%) 1795(98%) 31(86%) 2848(85%) 6771 (92%)
Total 524 (7%) 1499(20%) 1826(25%) 36 (0%) ... 3341(46%) 7337(100%)

Fig. 11: Disparate impact of Staples’ pricing scheme across ethnic groups. In the global population, American Indians and Alaska natives
are negatively effected. For low-income women in New-York, white users are also strongly disadvantaged.

A.2 Movie Recommender Investigation
Omitted from the body of the paper is our inves-

tigation of the movie recommender, which revealed
interesting but naturally explained effects, underscoring
the importance of incorporating notions such as busi-
ness necessity and utility when designing systems for
detection and prevention of unfairness.

Our movie recommender is trained using the alternat-
ing least squares algorithm [33] and the MovieLens-1M
dataset [6] (1M ratings provided by 6,040 users on a
total of 3,900 movies). The ratings take values in [1, 5],
and each user has rated at least 20 movies. The dataset
also includes user demographics (e.g., age, gender) and
movie metadata (e.g., release date, genre). The test set
is comprised of 10 randomly chosen ratings per user,
and the rest of the data are used as the training set. The
system is trained to model the kinds of movies users
generally like. Furthermore, the system can be config-
ured to recommend new movies and also predict the
rating that a user will give a movie. For ErrorProfiling,
we measure the root-mean-squared-error of our system’s
predicted ratings (for each user) over the test set.

We show how programmers can combine FairTest’s
investigations to perform end-to-end explorations of
associations. We refrain from making adaptive investi-
gations, as the dataset is small. Instead, we set up all our
investigations up front, and use FairTest to evaluate them
over a single test set. Standard corrections for multiple
testing guarantee the validity of the results.

Our first experiment is to Test for differences in simple
characteristics of recommended movies (e.g., a movie’s
average user rating – a proxy for popularity – and a
movie’s age in years since its release). We hypothesize
that the genre of recommended movies could be linked
to potential disparities in movie popularity. We thus also
set up a Discovery to find which genres are associated
with age and gender. Finally, we initiate an ErrorProfil-
ing, to see how the system’s prediction errors vary across
user demographics, as this may account for certain
associations. FairTest’s API then allows us to train, test

Report of associations of O=Ratings on Si=Age:
Global Population of size 3,020
p-value = 1.97e-15 ; CORR = [0.0907, 0.2055]

Report of associations of O=Ratings on Si=Gender:
Global Population of size 3,020
p-value = 1.11e-03 ; CORR = [0.0106, 0.1274]

Report of associations of O=Movie Age on Si=Age:
Global Population of size 3,020
p-value = 5.14e-62 ; CORR = [0.2435, 0.3457]

Report of associations of O=Movie Age on Si=Gender:
Global Population of size 3,020
p-value = 2.46e-02 ; CORR = [-0.0079, 0.1038]

(a) Association Testing

Report of associations of O=RMSE on Si=Age:
Global Population of size 3,020
p-value = 2.47e-04 ; CORR = [-0.1364, -0.0178]

Report of associations of O=RMSE on Si=Gender:
Global Population of size 3,020
p-value = 6.82e-03 ; CORR = [-0.1204, -0.0016]

(b) Error Profiling
Fig. 12: Associations for the movie recommender (a) Correlation
between user age and gender and the rating and age of offered movies.
(b) Error profiling (RMSE for 10 ratings) across age and gender.

and report all three investigations simultaneously.

For the first investigation (see Fig.12(a)), FairTest
reveals that movies recommended for women are overall
a little less popular (but from the same time period) than
those for men, and recommendations for older people

16



are older and more popular than those for younger users.
Our Discovery investigation further finds that women
receive more recommendations for romantic movies,
musicals and children movies, while men receive more
action movies, thrillers and war films. Older users also
receive many movies on war, while younger users get
more action and crime films. These associations may of-
fer a plausible explanation for the rating differences: war
movies are among the most highly rated movies in the
dataset, while the action and children genres typically
score lower. Finally, when assessing the recommender’s
error distribution (Fig.12(b)), FairTest finds only small
disparities, with men and older users getting slightly
more accurate predictions overall than, respectively,
women and younger users. This does not support our
initial suspicion that disparities in the recommender’s
accuracy may account for differences in the popularity of
recommended movies. Given additional data, a follow-
up Test of association between popularity and gender or
age using prediction error as an explanatory attribute
might have uncovered more convincing evidence. Over-
all, these investigations illustrate that some associations
we find in data-driven applications may have very natu-
ral and ‘fair’ explanations. It is thus crucial that systems
for detecting and preventing unfair application behaviors
be equipped to handle such confounding factors.

B Supplementary Related Work
We addressed related work compactly in §2.2. Because
our work is inter-disciplinary, touching on fields includ-
ing privacy (fairness and transparency) and machine
learning, we provide further details about specific related
works to give more context to people from different
communities.
Algorithmic Fairness. Our work is most closely related
to the growing field of algorithmic fairness, initiated by
the work of Pedreschi et al. [42]. Their notion of fair-
ness, based on manually imposed thresholds for binary
association metrics, has been reused in a large number
of works on discrimination detection [16, 38, 47, 48, 57]
and prevention [7, 16, 20, 30, 31, 38, 57] (i.e., the con-
struction of ‘fair-by-design’ ML algorithms). Some au-
thors have proposed explicit fairness definitions based on
such binary metrics, e.g., a-protection [20, 47, 48] or e-
fairness [16]. More general association measures have
also been considered, such as statistical parity (e.g., [56],
for binary protected attributes and arbitrary categorical
outputs) and mutual information [32] (for general cate-
gorical attributes). As discussed in §2.2, the mechanisms
presented in these works are always tied to the specific
metric they consider, and thus often limited in scope and
applicability.

More importantly, a majority of prior works has
focused on assessing fairness strictly at the level of a full

user population, thus sacrificing the ability to detect or
prevent severe discrimination manifested in particular
subpopulations [7, 16, 30–32, 57]. Those works that do
integrate a notion of discrimination context [38, 47, 48]
essentially resort to an exhaustive enumeration of all
meaningful subpopulations, raising questions about
the scalability, as well as about the false discovery
rate of their approaches (corrections for multiple sta-
tistical testing are not considered for instance). Prior
work also largely ignores plausible explanations for
associations, thus treating any statistical dependence
between protected attributes and outputs as a fairness
violation [7, 16, 20, 30–32, 38].

Finally, a line of work initiated by Dwork et al. [12,56]
has considered discrimination prevention from an in-
dividual’s point of view, essentially aiming at building
classifiers that treat similar people similarly. A funda-
mental issue underlying this approach is that fairness is
defined with respect to a socially agreed-upon similarity
metric for users in a given context [12]. Constructing
such a metric is highly non-trivial, especially when one
only has access to information about individuals in a
small sample, as opposed to every individual from the
population. It is also non-trivial to test for the proposed
notion of fairness on a sample (see [10, 27] for progress
on this problem under very strong assumptions about the
population).
Web Transparency. Our work also relates to the emerg-
ing field of web transparency [1, 3, 8, 21, 22, 34, 35, 37,
53, 55]. Although some works touch on discrimination
and fairness (e.g., [8]), their setting is different: These
works rely on controlled, randomized experiments that
probe a service with different inputs (generally not real
user profiles) and observe the effects on outputs, so as
to identify and quantify Web services’ use of personal
data to target, personalize, and tune prices. Detection
of unfair or unwarranted associations, as in FairTest, re-
quires making inferences from application behavior on
real user profiles, which may contain hidden correlations
between inputs and sensitive values that would be unob-
servable with controlled experiments.
Debugging Machine Learning Applications. This
header can mean at least two different things. The first
are techniques to ensure a correct implementation of a
well-specified learning algorithm (e.g., a gradient de-
scent algorithm for a particular objective function). The
second are techniques to improve modeling and/or pre-
dictive performance of a classifier or predictor learned
on training data. Here, we are primarily concerned with
this second notion of debugging, although incorrect im-
plementations of well-specified algorithms may also be
diagnosed with similar techniques.

Machine learning practitioners typically use ex-
ploratory data analysis tools in somewhat ad hoc fashion

17



to understand the data features and the modeling errors,
at least as they manifest in training examples [24,40,41].
This includes conducting ablative analyses, examining
feature dependency plots, and identifying commonalities
among error cases. These techniques can also be applied
to try to discover unwarranted associations between data
features and protected attributes, but as we have argued
in §2.2, they are not sufficient.

Some specific learning algorithms are more amenable
to post-learning introspection. For example, in [29], the
authors using bootstrap resampling to assess the influ-
ence of a single training example. A direct application
of this idea is computationally prohibitive, but they show
how to implement a fast approximation when using the
“boosting” learning method [17]. As another example,
in [5], the author shows that when using Random Forests
learning method [4], the practitioner can “[look] inside
the black box” (i.e., inspect the learned predictor) to per-
form many introspective analyses such as assessing the
effects of features, clustering of training examples, and
identification of outliers. Some of these analyses could
be automated much like in FairTest, although the tree
structures used in Random Forests are not constructed
with the goal of finding unwarranted associations, and
hence may miss many important effects.

C Relation to U.S. Discrimination Law
Our design of FairTest is informed by our own study
of U.S. discrimination law (as legal non-experts) and
informal discussions with discrimination law experts.
Although the legal framework only applies to a few do-
mains, such as housing, hiring, credit, housing, or health,
FairTest extends legal concepts and applies them more
broadly to many modern forms of data-driven decision
making, such as tuning prices, labeling users’ images,
and personalizing healthcare processes. We discuss three
aspects that have significantly influenced our design.

First, discrimination law encompasses both differen-
tial treatment (where intention, or causality, must be
demonstrated before it can be prosecuted) and disparate
impact (where demonstrating “significant harm” is
sufficient, regardless of whether intention, or causality,
can be established). FairTest’s design is exclusively
aimed at identifying disparate impact and leverages
association, not causation, to measure that impact.

Second, key in discrimination law is the notion of
business necessity: if a company can make the argument
that the differential treatment or disparate impact in their
processes appear as a result of an important business
requirement, then they are exempt. For example, the
hiring decisions of a trucking company may appear
discriminatory against women, but if the bias can be
explained by the fact that few or no women applicants
have the requisite commercial driver’s license, this

apparent discrimination will be excused [48].
Third, establishing significant harm involves rather

complex case-building processes. For example, in U.S.
hiring law, a ratio of 4/5 for hiring rates of two groups
is generally considered discriminatory, but lower effects
may also qualify, depending on the case [14]. FairTest
therefore does not attempt to impose a strict defini-
tion, threshold, or interpretation for what constitutes
discrimination, but instead aims to reveal all statisti-
cally significant associations between an algorithm’s
outcomes and protected user groups.

18


	Introduction
	Motivation and Goals
	Motivating Examples
	Candidate Approaches and Related Work
	Design Goals
	Threat Model and Assumptions

	FairTest Overview
	Association Report Example
	Architecture
	FairTest Algorithm

	Detailed Design
	Unwarranted Associations
	Association Metrics
	Association Context Discovery
	Statistical Validation and Prioritization
	Investigations
	Debugging
	Dataset Management

	Prototype and Deployments
	Evaluation
	Detection Effectiveness (Q1)
	Performance (Q2)
	Investigation Experience (Q3)
	Predictive Healthcare
	Image Tagger
	Adult Income Census Dataset


	Conclusion
	Supplementary Investigations
	Racial Biases in Staples Simulation
	Movie Recommender Investigation

	Supplementary Related Work
	Relation to U.S. Discrimination Law

